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ON EXISTENCE AND UNIQUENESS OF A STRONG STATIONARY SOLUTION
TO AN SDE WITH NON-REGULAR DRIFT

OLGA ARYASOVA, ANDREY PILIPENKO

Consider a d-dimensional stochastic di�erential equationdφt(x) = (−λφt(x) + α(φt(x))) dt+
m∑
k=1

σk(φt(x))dwk(t), t ≥ 0,

φ0(x) = x,

(1)

where x = (x1, . . . , xd) ∈ Rd, λ > 0, (w(t))t≥0 = (w1(t), . . . , wm(t))t≥0 is a standard m-
dimensional Wiener process, α : Rd → Rd and σ = (σ1, . . . , σm) : Rd → Rd × Rm are
bounded functions.
Assume that

(1) σ satis�es the Lipschitz condition and the uniform ellipticity condition,
(2) α(x) = α+(x)1Ix∈Rd

+
+α−(x)1Ix∈Rd

−
, where α± are Lipschitz functions, i.e., the drift

has a jump discontinuity along a hyperplane Rd−1×{0} and is Lipschitz continuous
in the upper and the lower half-spaces.

We give su�cient conditions that ensure |φt(y) − φt(x)| → 0, t → ∞, convergence to
zero of the distance between solutions that started from di�erent points.
We also prove existence and uniqueness of a strictly stationary strong solution to (1).
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ABOUT ONE GOODNESS-OF-FIT TEST

PETRE BABILUA, ELIZBAR NADARAYA

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a sequence of independent, equally distributed random variables,
having a distribution density 𝑓(𝑥). Based on sample 𝑋1, 𝑋2, . . . , 𝑋𝑛 it is required to check
the hypothesis

𝐻0 : 𝑓(𝑥) = 𝑓0(𝑥).

Here we consider the hypothesis 𝐻0 testing, based on the statistics

𝑇𝑛 = 𝑛𝑎−1
𝑛

∫︁
(𝑓𝑛(𝑥)− 𝑓0(𝑥))

2𝑟(𝑥) 𝑑𝑥,

where 𝑓𝑛(𝑥) is the recurrent Wolverton–Wagner kernel estimate of probability density
defined by:

𝑓𝑛(𝑥) = 𝑛−1

𝑛∑︁
𝑖=1

𝑎𝑖𝐾((𝑎𝑖(𝑥−𝑋𝑖))),

where 𝑎𝑖 is an increasing sequence of positive numbers tending to infinity, 𝐾(𝑥), 𝑓0(𝑥)
and 𝑟(𝑥) satisfy certain regularity conditions.

∙ Question of consistency for the constructed criterion against any alternative 𝐻1 :
𝑓(𝑥) = 𝑓1(𝑥), where 𝑓1(𝑥) is such that

∫︀
(𝑓𝑛(𝑥)− 𝑓0(𝑥))

2𝑟(𝑥) 𝑑𝑥 > 0 is studied.

∙ The limiting behavior of the power is studied for sequence of close to hypothesis
𝐻0 alternatives of type Pitmen and Rosenblatt [1] and it is shown that the tests
based on 𝑇𝑛 for above mentioned alternatives are more powerfull in limits than
the tests based of Bickel–Rosenblatt [2].
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PROPERTIES OF CORRELOGRAM-BASED ESTIMATORS IN

SIMO-SYSTEMS

I. BLAZHIEVSKA, V. ZAIATS

A lot of problems in different branches of engineering and science (signal and image
processing, communications and networks, control), finance, medicine and biology may
be solved under an appropriate choice from the approximating models. In the talk, we
consider a “black–box” model (which admits some input and output signals) and cover the
problem how to estimate its parameters. The random character and the "independence
of past time moments and places of simulation" of the signals lead us to stochastic linear
time-invariant systems (LTI) with stationary inputs. Notice the important fact: any
LTI system is uniquely identified by means of an impulse response function (IRF). We
demonstrate this feature on a single-input multiple-output (SIMO) channel-model.
Let us be more specific. Consider the following LTI SIMO system whose IRF has (𝑛+1)

real-valued and 𝐿2(R)-integrable components (or kernels):

𝑊

𝐻1

𝐻2...
𝐻𝑛

𝑔Δ

𝑌1

𝑌2

...
𝑌𝑛

𝑋Δ

Here, 𝐻𝑗 = (𝐻𝑗(𝜏), 𝜏 ∈ R), 𝑗 = 1, ..., 𝑛, are 𝑛 unknown functions while 𝑔Δ = (𝑔Δ(𝜏), 𝜏 ∈
R), is a known function depending on a parameter ∆ > 0 and having a 𝛿-like structure
as ∆ → ∞. We shadow the channels where unknown IRF components appear.
System’s input is a standard Wiener process 𝑊 = (𝑊 (𝑡), 𝑡 ∈ R), whereas outputs are:

𝑌𝑗(𝑡) =

∫︁ ∞

−∞
𝐻𝑗(𝑡− 𝑠)𝑑𝑊 (𝑠), 𝑗 = 1, 2, ..., 𝑛, 𝑡 ∈ R;

𝑋Δ(𝑡) =

∫︁ ∞

−∞
𝑔Δ(𝑡− 𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ R.

Above integrals are called Wiener shot noise processes; they are jointly Gaussian, station-
ary, zero-mean processes having spectral densities [3].
After observation of the outputs 𝑌1, 𝑌2, ..., 𝑌𝑛 and 𝑋Δ, it is possible to consider three

statistical problems:

∙ to estimate the unknown correlation function of each 𝑌𝑗, 𝑗 = 1, 2, ..., 𝑛;
∙ to estimate the unknown cross-correlation function of any pair 𝑌𝑗 and 𝑌𝑘, 𝑗 ̸= 𝑘;
∙ to estimate the unknown kernels 𝐻𝑗, 𝑗 = 1, 2, ..., 𝑛.

The approach solving all of these problems is based on constructing integral-type cor-
relograms between the pairs of outputs belonging to three classes, {𝑌𝑗, 𝑌𝑗}, {𝑌𝑗, 𝑌𝑘} and
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{𝑌𝑗, 𝑋Δ} respectively. After some adaptations, the solutions of the first two problems
may be taken from [3, 4]; more precise, the results on asymptotic normality and on con-
structing of confidence intervals for the corresponding estimators in different functional
spaces may be found there. The third problem covers the both above since correlation
and cross-correlation functions are identified in terms of convolutions between the pairs
of kernels 𝐻𝑗 (𝑗 = 1, 2, ..., 𝑛) only. That is why we pay an attention to the last problem
only.
For any 𝑗 = 1, 2, ..., 𝑛, we use the following scaled sample cross-correlogram between 𝑌𝑗

and 𝑋Δ as an estimator for 𝐻𝑗:

̂︀𝐻𝑗,𝑇,Δ(𝜏) =
1

𝑇

∫︁ 𝑇

0

𝑌𝑗(𝑡 + 𝜏)𝑋Δ(𝑡)𝑑𝑡, 𝜏 ∈ R,

where 𝑇 is the length of the averaging interval. The fact that the estimator ̂︀𝐻𝑗,𝑇,Δ =(︀ ̂︀𝐻𝑗,𝑇,Δ(𝜏), 𝜏 ∈ R
)︀
is biased and depends on two parameters, 𝑇 and ∆, enable us to study

the role of these parameters in obtaining nice statistical properties of the estimator.
Our investigation deals with asymptotic behaviour of the IRF component’s estimator̂︀𝐻𝑗,𝑇,Δ as 𝑇 → ∞ and ∆ → ∞ in different functional spaces. Depending on a space we

choose, the basic assumptions 𝐻𝑗 ∈ 𝐿2(R), 𝑗 = 1, 2, ..., 𝑛, and 𝑔Δ ∈ 𝐿2(R), are comple-
mented with some extras related to sample behaviour of Gaussian processes and quadratic
forms of Gaussian processes. For this purpose, we apply some techniques from [1]–[5]. We
compare our results to earlier ones [6] and give illustrative examples [7].

Acknowledgements. Work was partially supported by the MINECO/FEDER under Grant
MTM2015-69493-R. The first author would like to thank the Research Group on Advanced
Statistical Modelling (coordinators Prof P. Puig-Casado and J. del Castillo-Franquet) for
hospitality during her research stay at the Universitat Autònoma de Barcelona.
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ASYMPTOTICS FOR WAVE EQUATIONS WITH STOCHASTIC

MEASURES

IRYNA BODNARCHUK

Let ℬ be the Borel 𝜎-algebra of subsets of [0, 𝑇 ], 𝑇 > 0, 𝐿0(Ω,ℱ ,P) be the set of
real-valued random variables defined on a complete probability space (Ω,ℱ ,P).

Consider the Cauchy problem for the stochastic wave equation⎧⎪⎨⎪⎩
𝜕2𝑢(𝑡, 𝑥)

𝜕𝑡2
= 𝑎2∆𝑥𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) + 𝜎(𝑡, 𝑥) �̇�(𝑡),

𝑢(0, 𝑥) = 𝑢0(𝑥);
𝜕𝑢(0, 𝑥)

𝜕𝑡
= 𝑣0(𝑥),

(1)

where (𝑡, 𝑥) ∈ [0, 𝑇 ] × R𝑑, 𝑑 = 1, 2, 𝑎 > 0, ∆𝑥 is Laplace operator. Here 𝜇 is a general
stochastic measure defined on ℬ, i.e. 𝜇 : ℬ → 𝐿0(Ω,ℱ ,P) is a 𝜎-additive mapping.

We investigate the mild solution of (1), i. e., any measurable random function 𝑢(𝑡, 𝑥) =
𝑢(𝑡, 𝑥, 𝜔) : [0, 𝑇 ] × R𝑑 × Ω → R such that ∀ (𝑡, 𝑥):

𝑢(𝑡, 𝑥) =

∫︁
R𝑑

𝑆𝑑(𝑡, 𝑥− 𝑦)𝑣0(𝑦) 𝑑𝑦 +
𝜕

𝜕𝑡

(︂∫︁
R𝑑

𝑆𝑑(𝑡, 𝑥− 𝑦)𝑢0(𝑦) 𝑑𝑦

)︂
+

∫︁ 𝑡

0

𝑑𝑠

∫︁
R𝑑

𝑆𝑑(𝑡− 𝑠, 𝑥− 𝑦)𝑓(𝑠, 𝑦, 𝑢(𝑠, 𝑦)) 𝑑𝑦

+

∫︁
(0, 𝑡]

𝑑𝜇(𝑠)

∫︁
R𝑑

𝑆𝑑(𝑡− 𝑠, 𝑥− 𝑦)𝜎(𝑠, 𝑦) 𝑑𝑦 .

Here 𝑆𝑑(𝑡, 𝑥) is the fundamental solution of the wave equation.
We assume some conditions on functions 𝑣0, 𝑢0, 𝜎, 𝑓 like measurability, boundedness

and regularity.
The existence, uniqueness and Hölder continuity of the mild solution are proved in [1]

(one-dimensional case) and in [2] (two-dimensional case).
We investigate the asymptotic behavior of the mild solution as the spatial variable tends

to infinity.

References

[1] Bodnarchuk I.M. Wave equation with a stochastic measure // Theory Probab. Math. Statist. — 2017.
— No. 94. — P. 1–16.

[2] Bodnarchuk I.M., Radchenko V.M. Wave equation in a plane driven by a general stochastic measure

// Teoriya Imovirn. Matem. Statyst. — 2018. — No. 1(98). — P. 70–86. (Ukrainian)

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

E-mail address: ibodnarchuk@univ.kiev.ua

10 «Stochastic Equations, Limit Theorems and Statistics of Stochastic Processes»



THE MODIFIED EULER SCHEME FOR A WEAK APPROXIMATION

OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

DRIVEN BY A WIENER PROCESS

SEMEN BODNARCHUK

Our goal is to provide direct and clear way for obtaining the weak approximation of
diffusion processes of the form

𝑋𝑡 = 𝑥+

𝑡∫︁
0

𝑎(𝑋𝑠)𝑑𝑠+

𝑡∫︁
0

𝜎(𝑋𝑠)𝑑𝑊𝑠, 0 ≤ 𝑡 ≤ 𝑇,

where 𝑊 = (𝑊 1, . . . ,𝑊𝑚) is a Wiener process, 𝑥 ∈ R𝑑, 𝑎 : R𝑑 → R𝑑, 𝜎 : R𝑑 → R𝑑×𝑚.
In the classical approach the Ito-Taylor expansion is used for such a reason (see, for
example, book [1]). But in this case we need to simulate multiple Ito integrals which is
quite complicated problem. Instead of such multiple integrals the random variables which
have to satisfy some moment conditions can be used (for details, see [1], Corollary 5.12.1).
And it is not so convenient, because in multi-dimensional case for weak approximation
of higher order the choosing of such variables is not very clear. We propose another way
for obtaining the weak approximation of diffusion processes which avoids all mentioned
above difficulties.
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LARGE DEVIATIONS FOR RANDOM WALK IN RANDOM

ENVIRONMENT

DARIUSZ BURACZEWSKI, PIOTR DYSZEWSKI

In this talks we will discuss recent results concerning large deviations of one-dimensional
nearest neighbour random walk in site-random environment. Given a random environment
𝜔 = (𝜔𝑖)𝑖∈Z consisting of random weights from (0,1) we define random walk on Z

P𝜔(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) =

⎧⎨⎩ 𝜔𝑖 if 𝑗 = 𝑖+ 1,
1− 𝜔𝑖 if 𝑗 = 𝑖− 1,

0 otherwise.

Our main contribution is an extension of large deviation results for (𝑋𝑛) to precise (rather
than logarithmic) asymptotic. We will explain how this result is related to large deviations
of branching process in random environment and stochastic recurrence equations
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STOCHASTIC SYSTEMS WITH MEMORY, ROBUSTNESS AND

SENSITIVITY

GIULIA DI NUNNO

Stochastic systems with memory naturally appear in life science, economy, and finance.
We take the modelling point of view of stochastic functional delay equations and we
study these structures. We study the case when the driving noises admit jumps provid-
ing results on existence and uniqueness of strong solutions, estimates for the moments
and the fundamental tools of calculus. We study the robustness of the solution to the
change of noises. Specifically, we consider the noises with infinite activity jumps versus
an adequately corrected Gaussian noise.
In the case of Brownian driving noise, we consider evaluations based on these models

(e.g. the prices of some financial products) and the risks connected to the choice of these
models. In particular we focus on the impact of the initial condition on the evaluations.
This problem is known as the analysis of sensitivity to the initial condition and, in the
terminology of finance, it is referred to as the Delta. In this work the initial condition is
represented by the relevant past history of the stochastic functional differential equation.
This naturally leads to the redesign of the definition of Delta. We suggest to define it
as a functional directional derivative, this is a natural choice. For this we study a repre-
sentation formula which allows for its computation without requiring that the evaluation
functional is differentiable. This feature is particularly relevant for applications.
Our techniques make use of stochastic calculus via regularisations, Malliavin/Skorohod

calculus and functional derivatives.
The presentation is based on joint works with: D.R. Banos, F. Cordoni, L. Di Persio,

H.H. Haferkorn, F. Proske, E.E. Røse. See [1], [2].

Acknowledgements. The presentation is under the auspices of the Research Council of
Norway (RCN). Project number: 274410 with title STORM: Stochastics for time-space
risk models.
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OPEN DYNAMIC SYSTEMS. CONSERVATION LAWS AND

HARMONIZATION

VALERIYA. DOOBKO

1. Numerous problems of real systems study can be solved by modelling their evolution
on the basis of equations of dynamic system influenced by random perturbation [1]-[4].
In making up these equations, concrete assumptions about preserved functionals, which
are determined by the nature this phenomenon are being used. If a class of equations
is singled out properly, functional-analogs from dynamic variables must become stable
characteristics of the system. On the other hand, singling out preserved functionals for the
given set of equations, can serve as an indication of their existence in a modelling system.
The search for these functionals is the main goal of modelling, as well as establishing
dynamics of transition between them. For example, given the system of equations reflect
the evolution of the system of particles, which don’t disappear and are not multiplied
by others, the number of particles will be the example the preserved functional. For
the system of equations, if the conditions of existence and uniqueness of the decision
are fulfilled, we can affirm that the existence of such an invariant for the ensemble of
stochastic systems. This is an integral of density for these systems. We considered
some examples that demonstrate this general statement and methods of its realization:
construction of solutions of definite class of stochastic differential equations in partial
derivations; conservation of functional for the evolution in random environment, problem
of existence [1], [4].
2. The Theories of self-organization and evolution are based on idea of a possibility

the existence of synergetic phenomenon’s for complexity multi-element systems.However,
these theories It is not possible to explain the stable nature of the existence of a complex
consisting of finite number of elements. It is usually assumed that the Self-organization
effect can be is manifested only with an unlimited growth of a number of homo- and
heterogeneous elements and their connections These conclusions allow us to exam some
traditional considerations of Modern Biology in new aspects. When studying this problem
we were come to following conclusion. Under conditions of strong and noncausal inter-
actions with by environment there are a possibility of causal changes of characteristics
in the hierarchic organization’s complexity multi-element systems and for systems that
have limited number of elements. As emphasized above this point of view is essentially
different as compared with approaches, which are used for explanation a phenomenon
of self-organization in the stochastic system. Above mentioned problems as we believe,
require their solution [2]. We note that the problems of modelling open systems required
the development of the theory of stochastic differential equations [5]. A theory of inte-
gral invariants, first integrals, is created. The Ito-Ventzel formula was generalized for the
Wiener and Poisson perturbations [1].
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ASYMPTOTICS OF INTERSECTION LOCAL TIME FOR

CORRELATED BROWNIAN MOTIONS

ANDREY DOROGOVTSEV, OLGA IZYUMTSEVA

Consider a diffusion process 𝑥(𝑡), 𝑡 > 0 with the following infinitesimal generator

𝐿 = ∇ · (𝐴∇),

where
𝐴 = (𝑎𝑖𝑗)

4
𝑖𝑗=1 : R4 → R4×4

is symmetric, positive definite, uniformly elliptic. Suppose that 𝐴 is smooth with bounded
derivatives of all orders. It is known [1] that under announced assumptions on the operator
𝐿 the process 𝑥 has a transition density 𝑝·(·, ·) ∈ 𝐶((0; +∞) × R4 × R4) which satisfies
the following upper and lower heat kernel estimates. There exists 𝑐 ≥ 1 such that for any
𝑡 > 0, 𝑥, 𝑦 ∈ R4:

1

𝑐𝑡2
𝑒−

𝑐‖𝑥−𝑦‖2
𝑡 ≤ 𝑝𝑡(𝑥, 𝑦) ≤ 𝑐

𝑡2
𝑒−

‖𝑥−𝑦‖2
𝑐𝑡 .

In the talk we treat the two-coordinates components 𝑥1, 𝑥2 of 𝑥 as an analog of dependent
Brownian motions on the plane. The main object of our investigation is the intersection
local time for 𝑥1, 𝑥2 which is formally defined by the formula

𝐼𝑥𝑡 =

∫︁
Δ2(𝑡)

𝛿0(𝑥2(𝑡2) − 𝑥1(𝑡1))𝑑�⃗�.

To give a precise meaning for 𝐼𝑥𝑡 consider approximations

𝐼𝑥𝑡,𝜀 =

∫︁
Δ2(𝑡)

𝑓𝜀(𝑥2(𝑡2) − 𝑥1(𝑡1))𝑑�⃗�.

Here
∆2(𝑡) = {0 ≤ 𝑠1 ≤ 𝑠2 ≤ 𝑡},

𝛿0 is the delta-function at the point zero,

𝑓𝜀(𝑦) =
1

2𝜋𝜀
𝑒−

‖𝑦‖2
2𝜀 , 𝑦 ∈ R2, 𝜀 > 0.

It is naturally to try to define 𝐼𝑥𝑡 as the limit in mean square of approximations 𝐼𝑥𝑡,𝜀 as
𝜀 → 0.

Theorem 1. For any 𝑡 > 0 there exists the intersection local time

𝐼𝑥𝑡 := 𝐿2- lim
𝜀→0

𝐼𝑥𝑡,𝜀.

Let 𝑤1(𝑡), 𝑤2(𝑡), 𝑡 > 0 be the independent planar Brownian motions which can be
considered as the two-coordinates components of Brownian motion 𝑤(𝑡), 𝑡 > 0 in R4. It
was proved in [2] that there exists

𝐼𝑤 := 𝐿2- lim
𝜀→0

∫︁
Δ2(1)

𝑓𝜀(𝑤2(𝑡2) − 𝑤1(𝑡1))𝑑�⃗�.
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Lemma 1. (Moment estimates) For any 𝑚 ∈ N
𝐸(𝐼𝑥𝑡 )𝑚 ≤ (2𝜋)2𝑚 𝑐5𝑚 𝑡𝑚 𝐸(𝐼𝑤)𝑚

and

𝐸(𝐼𝑥𝑡 )𝑚 ≥ (2𝜋)2𝑚

𝑐5𝑚
𝑡𝑚 𝐸(𝐼𝑤)𝑚.

Lemma 2. (Upper estimate) For any 𝜆 > 0

lim sup
𝑡→+∞

1

𝑙𝑙𝑛𝑡
𝑙𝑛 𝑃

{︁ 𝐼𝑥𝑡
𝑡 𝑙𝑙𝑛𝑡

> 𝜆
}︁
≤ − 2𝜆

𝑐5𝜋2𝜅4
,

where 𝜅 is the best constant of Gagliardo-Nirenberg inequality, i.e.

𝜅 = inf{𝑐 > 0; ‖𝑓‖4 ≤ 𝑐 ‖∇𝑓‖
1
2
2 ‖𝑓‖

1
2
2 , 𝑓 ∈ 𝐿4(R2), ∇𝑓 ∈ 𝐿2(R2)}.

Lemma 3. (Lower estimate) Put 𝜅0 = 4 ln𝜅. For any 𝑎 > 0

inf
𝑡>0

1

𝑎
ln𝑃

{︁ 1

𝑐1
𝐼𝑥𝑡

1

𝑡
> 𝑎

}︁
≥ −𝐴,

where
𝐴 = (−2𝜅0 − 1 − 2𝜀)𝑒𝜅0𝑒𝜀, 𝜀 > 0, 𝑐1 > 0.

Theorem 2. (The law of iterated logarithm)

lim sup
𝑡→+∞

𝐼𝑥𝑡
𝑡 𝑙𝑙𝑛𝑡

= 𝑐0 𝑎.𝑠.,

where 𝑐0 ∈ (0; +∞).

Obtained asymptotics is the same as for two independent planar Brownian motions
[2]. We also discuss a comparison with the asymptotics of winding number for planar
Brownian motions in the isotropic stochastic flow [3–5].
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SIMULATION OF GAUSSIAN PROCESS WITH CORRELATION

FUNCTION OF A SPECIAL FORM

OLEKSANDR DYKHOVYCHNYI, NATALIIA KRUGLOVA

Gaussian processes whose correlation function is of a special form arise in many problems
of finding distribution of a functional of some stochastic process which is a restriction of
two-dimensional Chentsov random field on some set. Among other questions, determining
the exact distribution of functionals (in particular, their maximum) of such processes is
of a particular interest. In general, analytical form of distribution of such a functional is
unknown. Therefore, the problem of finding empirical distribution of the maximum needs
to be solved by simulation of an appropriate random process whose correlation function
is known.
A lot of well-known methods for simulating Gaussian random processes exist, e.g.

Cholesky method, Levinsons method, Wood and Chans method, etc. [2]. However, these
algorithms are quite generic. We suggest building a computationally efficient algorithm
that would account for the specifics of correlation function of the process in question.
Let 𝑌 (𝑡), 𝑡 ∈ [0, 1] be continuous Gaussian process with expectation 𝐸[𝑌 (𝑡)] = 0

and correlation function 𝑅(𝑠, 𝑡) = 𝑢(𝑠)𝑣(𝑡), 𝑠 ≤ 𝑡; such that 𝑎(𝑡) = 𝑢(𝑡)/𝑣(𝑡) is strictly
increasing and its inverse, 𝑎−1(𝑡), exists.
According to Doob’s Theorem [1], the processes 𝑌 (𝑡) and 𝑣(𝑡)𝑤(𝑎(𝑡)), where 𝑤(𝑡),𝑡 ∈

[0, 1] is a Wiener process, are stochastically equivalent.
Let 𝑌 (𝑡), ∀𝑡 ∈ [0, 1] be a process with correlation function as described above. Then,

we can simulate a trajectory of the Gaussian process 𝑌 (𝑡) as follows.
Let us divide [0, 1] into 𝑛 equal paths. Denote 𝑡𝑘 = 𝑘

𝑛
and ∆𝑎(𝑡𝑘) = 𝑎(𝑡𝑘) − 𝑎(𝑡𝑘−1),

𝑘 = 0, 𝑛.

Algorithm 1. Generate a random variable 𝜉0 from the standard Gaussian distribution.

Set 𝑌 (0) = 𝑣(0)𝜉0
√︀
𝑎(0) and 𝑖 = 0 and perform the following steps:

(1) i:=i+1;

(2) generate a random variable 𝜉𝑖 from the standard Gaussian distribution;

(3) set 𝑌 (𝑡𝑖) = 𝑣(𝑡𝑖)
∑︀𝑖

𝑘=1

√︀
∆𝑎(𝑡𝑘)𝜉𝑘;

(4) if 𝑖 ≤ 𝑛, return to step 1.

In this way we can simulate finite-dimensional distributions of the process 𝑌 (𝑡𝑘), 𝑘 =

0, 𝑛, whereas on intervals (𝑡𝑘, 𝑡𝑘+1) 𝑌 (𝑡) may be approximated with a linear interpolation.
Clearly, the algorithm can be easily implemented with R language.
Consider an example of applying the algorithm to determine distributions of a certain

functionals.

Example 1. Let us consider Chentsov random field 𝑋(𝑠, 𝑡) on the unit square and its

restriction 𝑍(𝑡) = 𝑋(𝑡,
√

1 − 𝑡2),∀𝑡 ∈ [0, 1]. We will construct simulation 𝑍(𝑡) of the

process 𝑍(𝑡) on the grid 𝐺: 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛−1 = 𝑛−1
𝑛
, using 𝑣(𝑡) =

√
1 − 𝑡2,

𝑎(𝑡) = 𝑡√
1−𝑡2

.
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We have found an empirical distribution for the maximum of this process. For this
purpose 104 realizations of the process 𝑍(𝑡) were generated and max[0,1)𝑍(𝑡) were compared
to known distributions. The closest distribution found turned out to be Weibull distri-
bution. This was also verified with Kolmorgov-Smirnov test. The picture below shows
histograms and empirical CDFs for both obtained distribution and Weibull distribution
as well as Q-Q and P-P plots illustrating their proximity.

Лiтература

[1] Doob J.L. Heuristic approach to Kolmogorov-Smirnov theorems // Ann. Math. Statist. — 1949. —
no. 20. — P. 393–403.

[2] Mikhaylov G.A., Voitishek V.A. Numerical statistical simulation. Monte Carlo methods // M.:
«Academy». — 2006. — 368 p. (in Russian)

[3] Prokhorenko N.V. Stochastic Equivalence of Gaussian Process to the Wiener Process, Brownian Bri-

dge, Ornstein–Uhlenbeck Process // Naukovi Visti NTUU KPI — 2016. — Vol. 4. — P. 85–93.
[4] Klesov O.I., Kruglova N.V. The distribution of a functional of the Wiener process and its application

to the Cnentsov-Yeh random field // Statistics — 2011. — Vol. 45, no. 1. — P. 19–26.

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

Email address: a.dyx@ukr.net

Email address: natahak@ukr.net

International conference dedicated to the 100th anniversary of I. I. Gikhman 19



A TRANSFORMED STOCHASTIC EULER SCHEME FOR

MULTIDIMENSIONAL TRANSMISSION PDE

PIERRE ÉTORÉ, MIGUEL MARTINEZ

In this paper ([1]) we consider multi-dimensional partial differential equations of par-
abolic type involving divergence form operators that possess a discontinuous coefficient
matrix along some smooth interface. The solution of the equation is assumed to present
a compatibility transmission condition of its conormal derivatives at this interface (multi-
dimensional diffraction problem, studied in [2]; the problem is also connected, on the
stochastic aspect, to [3]). We prove an existence and uniqueness result for the solution
and construct a low complexity numerical Monte Carlo stochastic Euler scheme to ap-
proximate the solution of the parabolic partial differential equation in divergence form.
In particular, we give new estimates for the partial derivatives of the solution. Using
these estimates, we prove a convergence rate for our stochastic numerical method when
the initial condition belongs to an iterated domain of the divergence form operator. Our
method presents the same convergence rate as the stochastic numerical schemes elabo-
rated for the same problem in the one-dimensional context ([4]). Finally, we compare our
results to classical deterministic numerical approximations and illustrate the accuracy of
our method.
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THE ABSOLUTE CONTINUITY OF THE DISTRIBUTIONS OF

SYSTEMS OF INTERACTING BROWNIAN PARTICLES

VLADIMIR FOMICHOV

Definition. A random field {𝑥(𝑢, 𝑡), 𝑢 ∈ R, 𝑡 > 0} is called a Harris flow with covariance
function Γ if it satisfies the following conditions:

(i) for any 𝑢 ∈ R the stochastic process {𝑥(𝑢, 𝑡), 𝑡 > 0} is a Brownian motion with
respect to the common filtration (ℱ𝑡 := 𝜎{𝑥(𝑣, 𝑠), 𝑣 ∈ R, 0 6 𝑠 6 𝑡})𝑡>0 and
𝑥(𝑢, 0) = 𝑢;

(ii) for any 𝑢, 𝑣 ∈ R from 𝑢 6 𝑣 it follows that 𝑥(𝑢, 𝑡) 6 𝑥(𝑣, 𝑡) for all 𝑡 > 0;
(iii) for any 𝑢, 𝑣 ∈ R the joint quadratic variation of the martingales {𝑥(𝑢, 𝑡), 𝑡 > 0}

and {𝑥(𝑣, 𝑡), 𝑡 > 0} is given by

⟨𝑥(𝑢, ·), 𝑥(𝑣, ·)⟩𝑡 =

𝑡∫︁
0

Γ(𝑥(𝑢, 𝑠) − 𝑥(𝑣, 𝑠)) 𝑑𝑠, 𝑡 > 0.

The existence of such stochastic flows under mild assumptions on the covariance func-
tion Γ was proved in [2]. If Γ = 1I{0}, the corresponding stochastic flow is called the
Arratia flow. Informally speaking, the Arratia flow is a system of Brownian particles
starting from every point of the real line, any two of which move independently until they
collide and after that coalesce and move together. This informal interpretation allows to
construct the Arratia flow with an arbitrary drift satisfying the Lipschitz condition and
to prove the Girsanov theorem for such stochastic flows (see [1]).

The structure of the dependence between particles in Harris flows makes the construc-
tion of Harris flows with drift much less straightforward. In our talk we will discuss the
definition of Harris flows with drift and prove their existence. We will also describe the
set of admissible shifts for the distributions of the 𝑛-point motions of Harris flows and
prove the corresponding Girsanov theorem.
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ASYMPTOTIC PROPERTIES OF THE NUMBER OF CLUSTERS IN A

ONE-DIMENSIONAL SYSTEM OF BROWNIAN PARTICLES

E.V. GLINYANAYA

We consider a one-dimensional system of Brownian particles with interaction.

Definition 1 ([1]). The Harris flow with the local characteristic Γ is a family {𝑥(𝑢, ·), 𝑢 ∈
R} of Brownian martingales with respect to the joint filtration such that:
1) for every 𝑢 ∈ R 𝑥(𝑢, 0) = 𝑢;
2) for every 𝑢1, 𝑢2 ∈ R, 𝑢1 ≤ 𝑢2, 𝑡 ≥ 0 : 𝑥(𝑢1, 𝑡) ≤ 𝑥(𝑢2, 𝑡);
3) for every 𝑢1, 𝑢2 ∈ R the joint quadratic variation of 𝑥(𝑢1, ·) and 𝑥(𝑢2, ·) is given by
𝑑 ⟨𝑥(𝑢1, ·), 𝑥(𝑢2, ·)⟩ (𝑡) = Γ(𝑥(𝑢1, 𝑡) − 𝑥(𝑢2, 𝑡))𝑑𝑡.

Remark. In [1] the existence of 𝑥 is proved for a real continuous positive definite
function such that Γ(0) = 1 and Γ is Lipshits outside any neighborhood of zero. In the
case when Γ = I{0} existence of 𝑥 was proved by R. Arratia [2] and called by his name.
Depending on the properties of Γ the coalescence of particles can happen. We are

interested in the asymptotic properties of clusters and its number in such flows. The
key tool in our investigation is a mixing property of the flow with respect to the spatial
variable.

Theorem 1 ([3]). The process {𝑥(𝑢, 𝑡) − 𝑢, 𝑢 ∈ R} is a stationary process. Moreover, if

Γ(𝑢) → 0 as |𝑢| → ∞ then this process has the mixing property.

Corollary 1. Consider a Harris flow with a local characteristic Γ such that Γ(𝑢) → 0 as

𝑢 → ∞. Let 𝜈𝑡([𝑢1, 𝑢2]) = #{𝑥([𝑢1, 𝑢2], 𝑡)} be the number of clusters in the Harris flow

at the time 𝑡 with the start points from the interval [𝑢1, 𝑢2]. Assume that E𝜈𝑡([0, 1]) < ∞.
Then

lim
𝑈→∞

𝜈𝑡([0, 𝑈 ])

𝑈
= E𝜈𝑡([0, 1]) − 1.

For the Arratia flow, i.e. for Γ = I{0}:

lim
𝑈→∞

𝜈𝑡([0, 𝑈 ])

𝑈
=

√︂
2

𝜋𝑡
.

Theorem 2 ([3]). Let 𝑠𝑢𝑝𝑝Γ ⊂ [−𝑐, 𝑐], 𝑐 > 0. Denote by 𝛼 the strong mixing coefficient

for the process {𝑥(𝑢, 𝑡) − 𝑢, 𝑢 ∈ R}. Then

𝛼(ℎ) ≤ 2

√︂
2

𝜋

∫︁ ∞

ℎ−𝑐

𝑒−𝑥2/2𝑑𝑥.

Using the central limit theorem for stationary sequence proved in [4] one can get as-
ymptotic distribution for a normalized number of clusters in the Arratia flow.
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Theorem 3. Let Γ = I{0}.
Then, for every 𝑡 > 0,

𝜈𝑡([0, 𝑛]) − E𝜈𝑡([0, 𝑛])√
𝑛

⇒ 𝑁(0, 𝜎2
𝑡 ), as 𝑛 → ∞,

where 𝜎2
𝑡 = 3−2

√
2√

𝜋𝑡
.

Corollary 2. Let Γ = I{0}. Then

4
√
𝑡𝜈𝑡([0, 1]) − 1

4
√
𝑡
√
𝜋
⇒ 𝑁(0, 𝜎2

1), as 𝑡 → 0.

Moreover, we can use the Berry-Esseen inequality for mixing processes proved in [5] to
obtain the next theorem:

Theorem 4. Let Γ = I{0}. Then, for any 𝑛 ≥ 1,

sup
𝑧∈R

⃒⃒⃒
P
{︂
𝜈𝑡([0;𝑛]) − E𝜈𝑡([0;𝑛])√

𝑛
≤ 𝑧

}︂
−

𝑧∫︁
−∞

1√︀
2𝜋𝜎2

𝑡

𝑒−𝑟2/2𝜎2
𝑡 𝑑𝑟

⃒⃒⃒
≤ 𝐶𝑛−1/2 log 𝑛.

The assumptions of the law of the iterated logarithm for mixing processes in [6] are
also fulfilled and we get:

Theorem 5. Let Γ = I{0}. Then, for any 𝑡 > 0,

lim sup
𝑛→∞

𝜈𝑡([0;𝑛]) − E𝜈𝑡([0;𝑛])

𝜎𝑡

√
𝑛 ln ln𝑛

= 1 a.s,

where 𝜎2
𝑡 :=

3 − 2
√

2√
𝜋𝑡

.
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MINIMAX INTERPOLATION PROBLEM FOR PERIODICALLY

CORRELATED SEQUENCES WITH MISSING OBSERVATIONS

I. I. GOLICHENKO, M.P. MOKLYACHUK

We consider the problem of optimal estimation of the linear functional

𝐴𝑠𝜁 =
𝑠−1∑︁
𝑙=0

𝑀𝑙+𝑁𝑙+1∑︁
𝑗=𝑀𝑙+1

𝑎(𝑗)𝜁(𝑗), 𝑀𝑙 =
𝑙∑︁

𝑘=0

(𝑁𝑘 + 𝐾𝑘), 𝑁0 = 𝐾0 = 0,

which depends on the unknown values of a periodically correlated (see [1]) with period 𝑇
stochastic sequence 𝜁(𝑗) from observations of the sequence 𝜁(𝑗) + 𝜃(𝑗) at points 𝑗 ∈ Z∖𝑆,
𝑆 =

⋃︀𝑠−1
𝑙=0{𝑀𝑙 + 1, . . . ,𝑀𝑙 + 𝑁𝑙+1}, where 𝜃(𝑗) is an uncorrelated with 𝜁(𝑗) periodically

correlated stochastic sequence. Assume that the number of missed observations on each
of the intervals and the number of observations on each of the intervals are a multiple of
𝑇 (𝐾𝑙 = 𝑇 ·𝐾𝑇

𝑙 and 𝑁𝑙+1 = 𝑇 ·𝑁𝑇
𝑙+1, 𝑙 = 0, . . . , 𝑠− 1), and coefficients 𝑎(𝑗), 𝑗 ∈ 𝑆 are of

the form

𝑎(𝑗) = 𝑎((𝑗 −
[︂
𝑗

𝑇

]︂
𝑇 ) +

[︂
𝑗

𝑇

]︂
𝑇 ) = 𝑎(𝜈 + �̃�𝑇 ) = 𝑎(�̃�)𝑒2𝜋𝑖�̃�𝜈/𝑇 ,

𝜈 = 1, . . . , 𝑇, �̃� ∈ 𝑆, 𝑆 =
𝑠−1⋃︁
𝑙=0

{︀
𝑀𝑇

𝑙 , . . . ,𝑀
𝑇
𝑙 + 𝑁𝑇

𝑙+1 − 1
}︀
, 𝑀𝑙 = 𝑇 ·𝑀𝑇

𝑙 , 𝑙 = 0, . . . , 𝑠−1.

Formulas for the spectral characteristic ℎ⃗(𝑓 𝜁 , 𝑓 𝜃) and the mean square error ∆(𝑓 𝜁 , 𝑓 𝜃)
of the optimal estimate of the functional 𝐴𝑠𝜁 are obtained in the case where spectral
densities of the sequences are exactly known. In this case

ℎ⃗⊤(𝑓 𝜁 , 𝑓 𝜃) =
(︁
𝐴⊤

𝑠 (𝑒𝑖𝜆)𝑓 𝜁(𝜆) − 𝐶⊤
𝑠 (𝑒𝑖𝜆)

)︁ [︁
𝑓 𝜁(𝜆) + 𝑓 𝜃(𝜆)

]︁−1

=

= 𝐴⊤
𝑠 (𝑒𝑖𝜆) −

(︁
𝐴⊤

𝑠 (𝑒𝑖𝜆)𝑓 𝜃(𝜆) + 𝐶⊤
𝑠 (𝑒𝑖𝜆)

)︁ [︁
𝑓 𝜁(𝜆) + 𝑓 𝜃(𝜆)

]︁−1

,

∆(𝑓 𝜁 , 𝑓 𝜃) = ⟨⃗𝑎𝜁𝑠,R𝜁
𝑠�⃗�

𝜁
𝑠⟩ + ⟨�⃗�𝜁𝑠,B𝜁

𝑠 �⃗�
𝜁
𝑠⟩,

where

𝐴𝑠(𝑒
𝑖𝜆) =

∑︁
�̃�∈𝑆

�⃗�(�̃�)𝑒𝑖�̃�𝜆,

�⃗�(�̃�) = (𝑎1(�̃�), . . . , 𝑎𝑇 (�̃�))⊤, 𝑎𝜈(�̃�) = 𝑎(𝜈 + �̃�𝑇 ), 𝜈 = 1, . . . , 𝑇,

�⃗�𝜁𝑠 =
(︀
�⃗�⊤(0), . . . , �⃗�⊤(𝑁𝑇

1 − 1), . . . , �⃗�⊤(𝑀𝑇
𝑠−1), . . . , �⃗�

⊤(𝑀𝑇
𝑠−1 + 𝑁𝑇

𝑠 − 1)
)︀⊤

,

𝐶𝑠(𝑒
𝑖𝜆) =

∑︁
�̃�∈𝑆

�⃗�(�̃�)𝑒𝑖�̃�𝜆,

�⃗�𝜁𝑠 =
(︀
�⃗�⊤(0), . . . , �⃗�⊤(𝑁𝑇

1 − 1), . . . , �⃗�⊤(𝑀𝑇
𝑠−1), . . . , �⃗�

⊤(𝑀𝑇
𝑠−1 + 𝑁𝑇

𝑠 − 1)
)︀⊤

= (B𝜁
𝑠)

−1D𝜁
𝑠�⃗�

𝜁
𝑠.
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Formulas that determine the least favorable spectral densities and the minimax spectral
characteristics are proposed for some classes of admissible spectral densities.
Formulation and investigation of problems of extrapolation, interpolation and filter-

ing of linear functionals which depend on the unknown values of periodically correlated
sequences and processes without missing observations are presented in [2].
Acknowledgements. The first author is partially supported by the project CPEA-LT-
2016/10139 Norway-Ukrainian cooperation in mathematical education.
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FIRST EXIT TIMES FOR EXPONENTIALLY LIGHT JUMP

DIFFUSIONS – A LARGE DEVIATIONS APPROACH

ANDRÉ DE OLIVEIRA GOMES, MICHAEL HÖGELE

It is a well known fact that, under certain conditions, the solution trajectories of a
dynamical system given by a differential equation written in a gradient form never leave
the domain of attraction of its stable states. The perturbation of such systems, in low
intensity, by a Brownian Motion, is a very well developed field of study and it is known as
Freidlin-Wentzell theory. Informally, with Gaussian perturbations with small intensity, it
is possible that the trajectories of the stochastic perturbed equations leave the domain of
attraction of the stable state and such exit happens to occur with small probabilities but
exponentially large in the intensity parameter that tunes the noise. Outside the realm of
Gaussian perturbations, in the vanishing noise regime, other studies were conducted and
it was observed different regimes of deviations, polynomially large in the noise parameter.
We present a certain class of perturbations by Lévy noises in such a way that it is possible
to characterize the exit rates of the domains of attraction using large deviations principles.
Our stochastic processes are jump processes that have an exponentially light integrability
property in the tails and we characterize the problem of the first exit time in terms of
the parameter of lightness of such tails observing a phase transition. When the jump
processes are super-exponentially light the first exit time is studied in a large deviations
regime and when the jump measure is sub-exponentially light such study is conducted by
means of moderate deviations principles. This talk is based on joint work with Michael
Högele (U. de los Andes, Bogotá Colombia).
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NESTED OCCUPANCY SCHEMES IN RANDOM ENVIRONMENTS

ALEXANDER IKSANOV

Let (𝑃𝑟)𝑟∈N be a collection of positive random variables satisfying
∑︀

𝑟≥1 𝑃𝑟 = 1 a.s.
Assume that, given (𝑃𝑟)𝑟∈N, ‘balls’ are allocated independently over an infinite collection
of ‘boxes’ 1, 2, . . . with probability 𝑃𝑟 of hitting box 𝑟, 𝑟 ∈ N. The occupancy scheme
arising in this way is called the infinite occupancy scheme in the random environment

(𝑃𝑟)𝑟≥1.
A popular model of the infinite occupancy scheme in the random environment assumes

that the probabilities (𝑃𝑟)𝑟∈N are formed by an enumeration of the a.s. positive points of

{𝑒−𝑋(𝑡−)(1 − 𝑒−Δ𝑋(𝑡)) : 𝑡 ≥ 0}, (1)

where 𝑋 := (𝑋(𝑡))𝑡≥0 is a subordinator (a nondecreasing Lévy process) with 𝑋(0) = 0,
zero drift, no killing and a nonzero Lévy measure, and ∆𝑋(𝑡) is a jump of 𝑋 at time 𝑡.
Since the closed range of the process 𝑋 is a regenerative subset of [0,∞) of zero Lebesgue
measure, one has

∑︀
𝑟≥1 𝑃𝑟 = 1 a.s. When 𝑋 is a compound Poisson process, collection

(1) transforms into a residual allocation model

𝑃𝑟 := 𝑊1𝑊2 · . . . ·𝑊𝑟−1(1 −𝑊𝑟), 𝑟 ∈ N, (2)

where 𝑊1, 𝑊2, . . . are i.i.d. random variables taking values in (0, 1).
Next, following [1] I define a nested infinite sequence of the infinite occupancy schemes

in random environments. This means that I construct a nested sequence of environments
(random probabilities) and the corresponding ‘boxes’ so that the same collection of ‘balls’
is thrown into all ‘boxes’. To this end, I use a weighted branching process with positive
weights which is nothing else but a multiplicative counterpart of a branching random
walk.

The nested sequence of environments is formed by the weights (𝑅(𝑢))|𝑢|=1 = (𝑃𝑟)𝑟∈N,
(𝑅(𝑢))|𝑢|=2, . . ., say, of the subsequent generations individuals in a weighted branching
process. Further, I identify individuals with ‘boxes’. At time 𝑗 = 0, all ‘balls’ are collected
in the box ⊘ which corresponds to the initial ancestor. At time 𝑗 = 1, given (𝑅(𝑢))|𝑢|=1,
‘balls’ are allocated independently with probability 𝑅(𝑢) of hitting box 𝑢, |𝑢| = 1. At
time 𝑗 = 𝑘, given (𝑅(𝑢))|𝑢|=1, . . . , (𝑅(𝑢))|𝑢|=𝑘, a ball located in the box 𝑢 with |𝑢| = 𝑘− 1
is placed independently of the others into the box 𝑢𝑟, 𝑟 ∈ N with probability 𝑅(𝑢𝑟)/𝑅(𝑢).

Assume that there are 𝑛 balls. For 𝑟 = 1, 2, . . . , 𝑛 and 𝑗 ∈ N, denote by 𝐾𝑛,𝑗,𝑟 the
number of boxes in the 𝑗th generation which contain exactly 𝑟 balls and set

𝐾𝑛,𝑗(𝑠) :=
𝑛∑︁

𝑟=⌈𝑛1−𝑠⌉

𝐾𝑛,𝑗,𝑟, 𝑠 ∈ [0, 1],

where 𝑥 ↦→ ⌈𝑥⌉ = min{𝑛 ∈ Z : 𝑛 ≥ 𝑥} is the ceiling function. With probability one the
random function 𝑠 ↦→ 𝐾𝑛,𝑗(𝑠) is right-continuous on [0, 1) and has finite limits from the
left on (0, 1] and as such belongs to the Skorokhod space 𝐷[0, 1]. I am going to present
sufficient conditions which ensure functional weak convergence of (𝐾𝑛,𝑗1(𝑠), . . . , 𝐾𝑛,𝑗𝑚(𝑠)),
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properly normalized and centered, for any finite collection of indices 1 ≤ 𝑗1 < . . . < 𝑗𝑚 as
the number 𝑛 of balls tends to ∞. If time permits, I shall discuss specializations of the
general result to (𝑃𝑟)𝑟∈N given by (1) and (2).

The talk is based on a work in progress, joint with Sasha Gnedin (London).
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LIMIT THEORY FOR MULTI-DIMENSIONAL RENEWAL SETS

ANDRII ILIENKO

Consider a sequence (𝜉𝑖, 𝑖 ∈ N) of i.i.d. random variables with a finite mean 𝜇 > 0, their
partial sums 𝑆𝑛 =

∑︀
𝑖≤𝑛 𝜉𝑖, and the corresponding renewal process 𝑁 =

(︀
𝑁(𝑡), 𝑡 > 0

)︀
given by 𝑁(𝑡) = min{𝑛 : 𝑆𝑛 ≥ 𝑡}. The asymptotic properties of 𝑁 are well-known (see,
e.g., [1] for strong LLNs, LILs, and distributional limit theorems for renewal processes).
In the multi-dimensional setting, i.e. for a multi-indexed family

(︀
𝜉𝑖, 𝑖 ∈ N𝑑

)︀
and respec-

tive partial sums 𝑆𝑛 over boxes {1, . . . , 𝑛1} × . . . × {1, . . . , 𝑛𝑑}, the above definition of
the renewal process is no more applicable due to the lack of a natural total order in N𝑑.
Consider the renewal lattice set ℳ𝑡 =

{︀
𝑛 ∈ N𝑑 : 𝑆𝑛 ≥ 𝑡

}︀
: the family (ℳ𝑡, 𝑡 > 0) may be

regarded as a set-valued stochastic process, which is a multi-dimensional counterpart of
the one-dimensional renewal process 𝑁 .
The talk provides a short overview of some known limit theorems concerning the as-

ymptotic behaviour of multi-dimensional renewal processes as well as new asymptotic
results about the location and the shape of renewal sets. In more detail, we show
that appropriately rescaled and smoothed renewal sets converge to the (non-random)
set ℋ =

{︀
𝑥 ∈ R𝑑

+ : 𝑥1 · . . . · 𝑥𝑑 ≥ 𝜇−1
}︀
. The rate of convergence (in the form of the

Marcinkiewicz-Zygmund strong law of large numbers), the law of the iterated logarithm,
and the weak invariance principle are studied as well. The strong LLN and the LIL are
expressed in the form of set inclusions and in terms of distances between sets, the latter
being the Hausdorff metric as well as the symmetric difference one.
More details on results presented in the talk can be found in [2].

The talk is based on joint work with Ilya Molchanov (University of Bern).
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ON GROWTH RATE OF SUMS FOR 𝑀-REGRESSION SEQUENCES

MARYNA ILIENKO

This talk continues the main line of investigation carried out in [2] where some results
on the rate of growth for sums of elements of the first order regression sequences were
obtained. The technique used in [2] is based on methods (see [1]) which allow to extend
the setting of the problem to the case of 𝑚-regression. Thus, consider the 𝑚-regression
sequence of random variables (𝜉𝑘):

𝜉𝑘 = 𝑏
(1)
𝑘 𝜉𝑘−1 + 𝑏

(2)
𝑘 𝜉𝑘−2 + ...+ 𝑏

(𝑚)
𝑘 𝜉𝑘−𝑚 + 𝛽𝑘𝜃𝑘, 𝑘 ≥ 1, (1)

𝜉1−𝑚 = ... = 𝜉−1 = 𝜉0 = 0,

where (𝛽𝑘) is a nonrandom real sequence, (𝑏
(𝑗)
𝑘 ; 1 ≤ 𝑗 ≤ 𝑚, 𝑘 ≥ 1) is a nonrandom

set of reals, and (𝜃𝑘) is a sequence of independent symmetric random variables such that
P{𝜃𝑘 = 0} < 1, 𝑘 ≥ 1. Let

𝑆𝑛 =
𝑛∑︁

𝑘=1

𝜉𝑘, 𝑛 ≥ 1,

and consider the random series
∞∑︁
𝑛=1

𝑆𝑛

𝑛1+1/𝑝
(2)

for 𝑝 > 0. The domain of convergence for the above series in 𝑝 may be regarded as a form
of specifying of the growth rate for 𝑆𝑛. So, we are interested in necessary and sufficient
conditions for the convergence almost surely of the series (2). Although general necessary
and sufficient conditions in terms of coefficients of the sequence (1) are bulky, they appear
to be quite simple at least in some specific cases.
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CONSISTENCY OF THE KOENKER-BASSETT ESTIMATOR IN

LINEAR REGRESSION MODEL

A.V. IVANOV, N.V. KAPTUR, I. N. SAVYCH

Consider a regression model

𝑋𝑗 = 𝑔(𝑗, 𝜃) + 𝜀𝑗,

𝑗 = 1, 𝑁,𝑁 ∈ N, where 𝑔(𝑗, 𝜃) =
𝑞∑︀

𝑖=1

𝜃𝑖𝑔𝑖(𝑗), 𝑗 = 1, 𝑁, 𝜃 = (𝜃1, ..., 𝜃𝑞) ∈ Θ𝑐, Θ ⊂ R𝑞, is

an open bounded set.
Regarding 𝜀𝑗 suppose
A1. 𝜀𝑗, 𝑗 ∈ Z , is a local functional of Gaussian time series, 𝜀𝑗 = 𝐺(𝜉𝑗), 𝐺(𝑥), 𝑥 ∈ R,

is nonrandom Borel function, and what’s more

E 𝜀0 = 0, E 𝜀20 < ∞.

A2. 𝜉𝑗, 𝑗 ∈ Z, is a Gaussian stationary time series with zero mean and covariance
function

𝐵(𝑗) = E 𝜉𝑗𝜉0 =
𝑟∑︁

𝑙=0

𝐴𝑙𝐵𝛼𝑙,𝜒𝑙
(𝑗), 𝑗 ∈ Z, 𝑟 > 0,

where 𝐴𝑙 > 0,
𝑟∑︀

𝑙=0

𝐴𝑙 = 1, 𝐵𝛼𝑙,𝜒𝑙
(𝑗) = cos(𝜒𝑙𝑗)

(1+𝑗2)
𝛼𝑙
2
, 𝑙 = 0, 𝑟, 0 = 𝜒0 < 𝜒1 < ... < 𝜒𝑟 < 𝜋,

𝛼𝑙 ∈ (0, 1).
Let 𝐹 (𝑥) be a distribution function of 𝜀0.
A3. 𝐹 (0) = 𝛽, 𝛽 ∈ (0, 1).
Introduce a loss function

𝜌𝛽(𝑥) =

{︂
𝛽𝑥, 𝑥 ≥ 0,

(𝛽 − 1)𝑥, 𝑥 < 0.
, 𝛽 ∈ (0, 1).

Definition. Koenker-Bassett estimator of parameter 𝜃 ∈ Θ is said to be any random
vector 𝜃𝑁 = 𝜃𝑁

(︀
𝑋𝑗, 𝑗 ∈ 1, 𝑁

)︀
∈ Θ𝑐 for which

𝑄𝑁(𝜃𝑁) = min
𝜏∈Θ𝑐

𝑄𝑁(𝜏), 𝑄𝑁(𝜏) =
𝑁∑︁
𝑗=1

𝜌𝛽 (𝑋𝑗 − 𝑔(𝑗, 𝜏)) .

Set 𝑑2𝑁 = 𝑑𝑖𝑎𝑔 (𝑑2𝑖𝑁)
𝑞
𝑖=1 , 𝑑2𝑖𝑁 =

𝑁∑︀
𝑗=1

𝑔2𝑖 (𝑗), and assume

0 < lim
𝑁→∞

𝑁−1/2𝑑𝑖𝑁 ≤ lim
𝑁→∞

𝑁−1/2𝑑𝑖𝑁 < ∞, 𝑖 = 1, 𝑞.

Perform the change of variables in the regression function 𝑢 = 𝑁−1/2𝑑𝑁(𝜏 − 𝜃) and set

ℎ(𝑗, 𝑢) = 𝑔(𝑗, 𝜃 + 𝑁1/2𝑑−1
𝑁 𝑢),

supposing 𝜃 is a true parameter value.
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The parametric set Θ transforms into �̃�𝑁(𝜃) = 𝑁−1/2𝑑𝑁(Θ − 𝜃) . The sense of this

change of variables is that the Koenker-Bassett estimator 𝜃𝑁 transforms into the normed
estimator �̄�𝑁 = 𝑁−1/2𝑑𝑁(𝜃𝑁 − 𝜃).
Let the following conditions be fulfilled.
B. (i) For any 𝜀 > 0 and 𝑟 > 0 there exist 𝛿 = 𝛿(𝑟, 𝜀) > 0 such that

sup
𝑢1,𝑢2∈𝑉 𝑐(𝑟)

⋂︀
�̃�𝑐
𝑁

(𝜃),

‖𝑢1−𝑢2‖≤𝛿

𝑁−1

𝑁∑︁
𝑗=1

|ℎ(𝑗, 𝑢1) − ℎ(𝑗, 𝑢2)| ≤ 𝜀,

where 𝑉 𝑐(𝑟) = {𝑢 ∈ R𝑞 : ‖𝑢‖ ≤ 𝑟}.
(ii) For any 𝑟 > 0 there exists 𝜎 = 𝜎(𝑟) < ∞ such that

sup
𝑢∈𝑉 𝑐(𝑟)

⋂︀
�̃�𝑐
𝑁 (𝜃)

𝑁−1

𝑁∑︁
𝑗=1

(ℎ(𝑗, 𝑢) − ℎ(𝑗, 0))2 ≤ 𝜎.

C. For any 𝑟 > 0 there exist ∆(𝑟) > 0 such that

inf
𝑢∈�̃�𝑐

𝑁 (𝜃)∖𝑉 𝑐(𝑟)
𝑁−1 E𝑄𝑁(𝜃 + 𝑁

1
2𝑑−1

𝑁 𝑢) ≥ E 𝜌𝛽(𝜀0) + ∆(𝑟),

Theorem. Under assumptions A1-A3, B, C the normed Koenker-Bassett estimator is

weakly consistent, namely: for any 𝑟 > 0

P(‖�̄�𝑁‖ ≥ 𝑟) = 𝑂 (𝐵 (𝑁)) as 𝑁 → ∞.

The proof of this theorem is based on the proof of a similar theorem for a nonlinear
continuous-time regression model, see [1].
Let us give sufficient conditions for validity of C. Random variable 𝜀0 has absolutely

continuous distribution function 𝐹 (𝑥), and next relations hold

sup
𝑗∈𝑁

sup
𝜏1,𝜏2∈Θ𝑐

|𝑔(𝑗, 𝜏1) − 𝑔(𝑗, 𝜏2)| = 𝑔0 < ∞, inf
|𝑥|≤𝑔0

𝑝(𝑥) = 𝑝0 > 0,

where 𝑝(𝑥) = 𝐹 ′(𝑥). It can be proved, that E 𝜌𝛽(𝜀𝑗 ±𝑔)−E 𝜌𝛽(𝜀0) ≥
1

2
𝑝0𝑔

2 for 𝑔 ∈ [0, 𝑔0].

Thus, 𝑁−1 E𝑄𝑁(𝜃 + 𝑁
1
2𝑑−1

𝑁 𝑢) ≥ E 𝜌𝛽(𝜀0) +
1

2
𝑝0𝑁

−1
𝑁∑︀
𝑗=1

(ℎ(𝑗, 𝑢) − ℎ(𝑗, 0))2 ,

and the validity of the condition C depends on the ability of the regression function to
distinguish the parameters.
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ASYMPTOTIC NORMALITY OF THE LEAST SQUARES ESTIMATOR
OF THE TEXTURED SURFACE SINUSOIDAL MODEL PARAMETERS

A.V. IVANOV, O.V. MALYAR

Consider the observation model

𝑋(𝑡1, 𝑡2) = 𝑔(𝑡1, 𝑡2; 𝜃
0) + 𝜀(𝑡1, 𝑡2), 𝑡 = (𝑡1, 𝑡2) ∈ R2

+,

𝑔(𝑡1, 𝑡2; 𝜃
0) =

𝑁∑︁
𝑘=1

(𝐴0
𝑘 cos(𝜆0

𝑘𝑡1 + 𝜇0
𝑘𝑡2) + 𝐵0

𝑘 sin(𝜆0
𝑘𝑡1 + 𝜇0

𝑘𝑡2)),

𝜃0 = (𝐴0
1, 𝐵

0
1 , 𝜆

0
1, 𝜇

0
1, ..., 𝐴

0
𝑁 , 𝐵

0
𝑁 , 𝜆

0
𝑁 , 𝜇

0
𝑁),

(𝐴0
𝑘)2 + (𝐵0

𝑘)2 > 0, 𝑘 = 1, 𝑁 , 𝜃0 is the vector of true values of unknown parameters;
𝜀 = {𝜀(𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ R2} is the random noise defined on a probability space (Ω,ℑ,P).
We state the following assumptions.

N. 𝜀 is a mean square continuous and almost surely continuous homogeneous Gaussian
field with zero mean and covariance function 𝐵(𝑡1, 𝑡2) = E𝜀(𝑡1, 𝑡2) × 𝜀(0, 0), (𝑡1, 𝑡2) ∈ R2,
which satisfies one of the following conditions:

(i) 𝜀 is isotropic field and 𝐵(𝑡1, 𝑡2) = 𝐵(‖𝑡‖) = 𝐿(‖𝑡‖)‖𝑡‖−𝛼, 𝛼 ∈ (0, 1), where 𝐿 is
a monotonically non-derceasing slowly varying at infinity function, 𝑡 = (𝑡1, 𝑡2), ‖𝑡‖ =
(𝑡21 + 𝑡22)

1/2;

(ii)

∫︁
R2

|𝐵(𝑡1, 𝑡2)|𝑑𝑡1𝑑𝑡2 < ∞.

R1. (𝜆0
𝑘, 𝜇

0
𝑘) < (𝜆0

𝑘+1, 𝜇
0
𝑘+1), 𝑘 = 1, 𝑁 − 1, and all the values 𝜆0

𝑗 , 𝜇0
𝑗 , 𝑖, 𝑗 = 1, 𝑁 , are

positive and different.

Consider two families of monotonically non-decreasing open sets

Λ𝑇 ⊂ Λ(𝜆, 𝜆), 𝑀𝑇 ⊂ 𝑀(𝜇, 𝜇), 𝑇 ≥ 𝑇0 > 0,

containig true values of parameters 𝜆0, 𝜇0, and satisfying the conditions

R2. lim
𝑇→∞

inf
1≤𝑗≤𝑁−1

𝜆∈Λ𝑇

𝑇 (𝜆𝑗+1 − 𝜆𝑗) = lim
𝑇→∞

inf
1≤𝑗≤𝑁−1

𝜇∈𝑀𝑇

𝑇 (𝜇𝑗+1 − 𝜇𝑗) = ∞,

lim
𝑇→∞

inf
𝜆∈Λ𝑇

𝑇𝜆1 = lim
𝑇→∞

inf
𝜇∈𝑀𝑇

𝑇𝜇1 = ∞.

Definition. The least squares estimator (LSE) in the Walker sence of the vector param-
eter 𝜃0 obtained by the observation of the field 𝑋(𝑡1, 𝑡2), (𝑡1, 𝑡2) ∈ [0, 𝑇 ] × [0, 𝑇 ], is called
any random vector 𝜃𝑇 = (𝐴1𝑇 , 𝐵1𝑇 , 𝜆1𝑇 , 𝜇1𝑇 , . . . , 𝐴𝑁𝑇 , 𝐵𝑁𝑇 , 𝜆𝑁𝑇 , 𝜇𝑁𝑇 ), such that it is a
point of absolute minimum of

𝑄𝑇 (𝜃) = 𝑇−2

∫︁ 𝑇

0

∫︁ 𝑇

0

[𝑋(𝑡1, 𝑡2) − 𝑔(𝑡1, 𝑡2; 𝜃)]2𝑑𝑡1𝑑𝑡2
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on the parametric set Θ ⊂ R4𝑁 where amplitudes 𝐴𝑘, 𝐵𝑘, 𝑘 = 1, 𝑁 , can take any values
and angular frequencies 𝜆, 𝜇 take values in the sets Λ𝑐

𝑇 , 𝑀 𝑐
𝑇 .

If the assumption N(ii) is fulfilled, then continuous bounded spectral density 𝑓(𝜆1, 𝜆2),
(𝜆1, 𝜆2) ∈ R2, of the field 𝜀 exists. In case of fulfillment of the condition N(i) an additional
assumption must be introduced.

NS. The random noise 𝜀(𝑡), 𝑡 ∈ R2, has a spectral density function

𝑓(𝜆1, 𝜆2) = 𝑓(‖𝜆‖) = 𝑐(𝛼)‖𝜆‖𝛼−2𝐿𝑠

(︁ 1

‖𝜆‖

)︁
where 𝑐(𝛼) =

Γ(2−𝛼
2 )

2𝛼𝜋Γ(𝛼2 ), 𝛼 ∈ (0, 1) and coinsides with 𝛼 from the condition N(i), 𝐿𝑠 is

a locally bounded slowly varying at infinity function such that 𝑓 is continuous on the set
R2 ∖ {0} and 𝑓(‖𝜆‖) ↑ ∞, as ‖𝜆‖ → 0.

Theorem. If the assumptions R1, R2, N(ii) or N(i) and NS are satisfied, then the

normed LSE in the Walker sence (𝑇 (𝐴1𝑇 − 𝐴0
1), 𝑇 (𝐵1𝑇 − 𝐵0

1), 𝑇 2(𝜆1𝑇 − 𝜆0
1), 𝑇 2(𝜇1𝑇 −

𝜇0
1), . . . , 𝑇 (𝐴𝑁𝑇 − 𝐴0

𝑁), 𝑇 (𝐵𝑁𝑇 − 𝐵0
𝑁), 𝑇 2(𝜆𝑁𝑇 − 𝜆0

𝑁), 𝑇 2(𝜇𝑁𝑇 − 𝜇0
𝑁)) is asymptotically

normal with zero mean and covariance matrix Ψ(𝜃0) where Ψ(𝜃0) is a block diagonal

matrix with the blocks

Ψ𝑘 =
8𝜋2𝑓(𝜆0

𝑘, 𝜇
0
𝑘)

(𝐴0
𝑘)2 + (𝐵0

𝑘)2

⎡⎢⎢⎣
(𝐴0

𝑘)2 + 7(𝐵0
𝑘)2 −6𝐴0

𝑘𝐵
0
𝑘 −6𝐵0

𝑘 −6𝐵0
𝑘

−6𝐴0
𝑘𝐵

0
𝑘 7(𝐴0

𝑘)2 + (𝐵0
𝑘)2 6𝐴0

𝑘 6𝐴0
𝑘

−6𝐵0
𝑘 6𝐴0

𝑘 12 0
−6𝐵0

𝑘 6𝐴0
𝑘 0 12

⎤⎥⎥⎦ ,

𝑘 = 1, 𝑁.

Let us provide a sketch of the proof. We consider a general nonlinear regression model
and prove a linearization theorem for the LSE of its parameters. Further we prove as-
ymptotic uniqueness in probability for this LSE and apply Brouwer fixed point theorem
to reduce the proof of the Theorem to calculating of the LSE asymptotic covariance ma-
trix in the linearized model. We check also that our trigonometric model satisfies the
conditions of these general theorems.

Consistency of the LSE in the Walker sence of the parameter 𝜃0 is proved in [1].
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ON THE WHITTLE ESTIMATOR FOR SPECTRAL DENSITY

PARAMETERS OF LINEAR RANDOM NOISE IN NONLINEAR

REGRESSION MODEL

A.V. IVANOV, I.V. ORLOVSKYI

Consider a regression model

𝑋(𝑡) = 𝑔(𝑡, 𝛼0) + 𝜀(𝑡), 𝑡 ≥ 0,

where 𝑔 : (−∆; ∞) × 𝒜𝛾 → R is a continuous function, true parameter value 𝛼0

belongs to an open bounded convex set 𝒜 ⊂ R𝑞, 𝒜𝛾 =
⋃︀

‖𝑒‖≤1

(𝒜 + 𝛾𝑒), 𝛾, ∆ are some

positive numbers, and random noise 𝜀 = {𝜀(𝑡), 𝑡 ∈ R} is measurable stationary linear
process in the sense that it can be represented in the form

𝜀(𝑡) =

∫︁
R

𝑎(𝑡− 𝑠)𝑑𝜁(𝑠), 𝑡 ∈ R, (1)

where 𝑎(𝑡), 𝑡 ∈ R, is a non-random function, 𝑎 ∈ 𝐿2(R), 𝜁(𝐴), 𝐴 ∈ B, is a homogeneous
random measure with finite seconds moments and independent values over disjoint sets.
Various conditions which ensure that (1) is well-defined can be found, for example, in [1].
Let all the moments of 𝜀 exist, 𝐸𝜀(𝑡) = 0. Suppose random process 𝜀 has all spectral

densities of higher orders (see, for example [2]) that can be written explicitly as

𝑓𝑟(𝜆1, . . . , 𝜆𝑘−1) = 𝑑𝑟 · ̂︀𝑎(−𝜆1 − . . .− 𝜆𝑟−1) ·
𝑟−1∏︁
𝑗=1

̂︀𝑎(𝜆𝑗),

where ̂︀𝑎(𝜆) =
1√
2𝜋

∞∫︀
−∞

𝑎(𝑡)𝑒−𝑖𝜆𝑡𝑑𝑡 is the Fourier transform of 𝑎, 𝑑𝑟 is 𝑟-th order cumulant

of random variable 𝜁
(︀
[0; 1]

)︀
.

Assume that ̂︀𝑎(𝜆) = ̂︀𝑎(𝜆, 𝜃𝑎0), 𝑑𝑘 = 𝑑𝑘(𝜃𝑑0). Then ordinary spectral density of random
process 𝜀 is of the form

𝑓2(𝜆) = 𝑑2̂︀𝑎(𝜆)̂︀𝑎(−𝜆) = 𝑑2|̂︀𝑎(𝜆)|2 = 𝑓(𝜆, 𝜃0), 𝜃0 = (𝜃𝑎0, 𝜃𝑑0) ∈ Θ,

where Θ ∈ R𝑚 is an open bounded convex set, 𝑓(𝜆, 𝜃) > 0 is defined on the set R× Θ𝜏 ,
Θ𝜏 =

⋃︀
‖𝑒‖≤1

(Θ + 𝜏𝑒), 𝜏 > 0.

Estimation of unknown parameter 𝜃0 of random noise spectral density is considered in
the talk. Regression function becomes interfering signal from that point of view. So we
firstly need to neutralize the influence of 𝑔(𝑡, 𝛼0) and only after that construct estimator
of spectral density parameter. It means that we have to start from the estimation of
regression function parameter 𝛼0. The least squares estimator was chosen for this purpose
as its definition does not need any information about random noise characteristics.
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Definition 1. The least squares estimator of the unknown parameter 𝛼 ∈ 𝒜 obtained by
the observations

{︀
𝑋(𝑡), 𝑡 ∈ [0, 𝑇 ]

}︀
is said to be any random vector ̂︀𝛼𝑇 = (̂︀𝛼1𝑇 , . . . , ̂︀𝛼𝑞𝑇 ) ∈

𝒜𝑐, 𝒜𝑐 is a closure of 𝒜 having the property

𝑄𝑇 (̂︀𝛼𝑇 ) = min
𝛼∈𝒜𝑐

𝑄𝑇 (𝛼), 𝑄𝑇 (𝛼) =

𝑇∫︁
0

(𝑋(𝑡) − 𝑔(𝑡, 𝛼))2 𝑑𝑡.

The Whittle estimator was chosen for the estimation of parameter 𝜃0 of spectral density
𝑓(𝜆, 𝜃) as it plays an important role in parameter estimation in the frequency domain and
it is one of the most popular estimator in applications.
Let us introduce the residual periodogram

𝐼𝑇 (𝜆, ̂︀𝛼𝑇 ) =
1

2𝜋𝑇

⃒⃒⃒⃒
⃒⃒

𝑇∫︁
0

(𝑋(𝑡) − 𝑔(𝑡, ̂︀𝛼𝑇 )) 𝑒−𝑖𝑡𝜆𝑑𝑡

⃒⃒⃒⃒
⃒⃒
2

, 𝜆 ∈ R,

and consider the Whittle contrast field

𝑈𝑇 (𝜃, ̂︀𝛼𝑇 ) =

∞∫︁
−∞

(︂
ln 𝑓(𝜆, 𝜃) +

𝐼𝑇 (𝜆, ̂︀𝛼𝑇 )

𝑓(𝜆, 𝜃)

)︂
𝜔(𝜆)𝑑𝜆, 𝜃 ∈ Θ𝑐,

where 𝜔(𝜆), 𝜆 ∈ R, is some even positive bounded and Lebesgue measurable weight
function.

Definition 2. The minimum contrast estimator of the unknown parameter 𝜃0 ∈ Θ is said

to be any random vector ̂︀𝜃𝑇 =
(︁̂︀𝜃1𝑇 , ..., ̂︀𝜃𝑚𝑇

)︁
having the property

𝑈𝑇

(︁̂︀𝜃𝑇 , ̂︀𝛼𝑇

)︁
= min

𝜃∈Θ𝑐
𝑈𝑇 (𝜃, ̂︀𝛼𝑇 ) .

Asymptotic properties of the Whittle estimator of the spectral density parameter of
stationary Gaussian random noise in the nonlinear regression models was considered in [3].
Sufficient conditions of consistency and asymptotic normality of the Whittle estimator

of spectral density parameter of linear stationary process in nonlinear regression models
are presented in the talk. Obtained statements continue research of [3] and extend them
on class of linear random noise that now is not necessary Gaussian.
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inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields // ESAIM:
PS. - 2010. - 14. - P. 210-255.

[3] Ivanov, O. V. and Prykhod’ko, V. V. On the Whittle Estimator of the Parameter of Spectral Density

of Random Noise in the Nonlinear Regression Model // Ukrainian Mathematical Journal - 2016. -
67, No 8. - P. 1183-1203.

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

Email address: alexntuu@gmail.com

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

Email address: orlovskyi@matan.kpi.ua

36 «Stochastic Equations, Limit Theorems and Statistics of Stochastic Processes»



INVARIANT PROBLEM AND ITS TRACTABILITY FOR STOCHASTIC

SYSTEMS

ELENA KARACHANSKAYA

A mathematical formulation of open systems described by stochastic differential equa-
tions is actual and thus an invariant problem for stochastic systems is very important.
In connection with this problem it is of interest to discuss available approaches for an

invariant definition.
Let (Ω,ℱ , {ℱ𝑡}𝑇0 , 𝑃 ) be a probability space with filtration. Suppose that 𝑤(𝑡) =

(𝑤1(𝑡), ..., 𝑤𝑚(𝑡))𝑇 is an 𝑚−dimensional Wiener process. Consider a random process
𝑥(𝑡) : [0, 𝑇 ] → R𝑛, which is a solution to a system of Itô SDE

𝑑𝑥𝑖(𝑡) = 𝑎𝑖(𝑡, 𝑥(𝑡))𝑑𝑡 +
𝑚∑︁
𝑘=1

𝑏𝑖𝑘(𝑡, 𝑥(𝑡))𝑑𝑤𝑘(𝑡),

𝑥(𝑡;𝑥(0))
⃒⃒
𝑡=0

= 𝑥(0),

(1)

whose coefficients (in general, random functions) satisfy the conditions of the existence
and uniqueness of a solution and the following smoothness conditions:

𝑎𝑖(𝑡;x) ∈ 𝒞1,1
𝑡,𝑥 , 𝑏𝑖𝑗(𝑡;x) ∈ 𝒞1,2

𝑡,𝑥 . (2)

Let us consider a function (𝑡, 𝑥) → 𝜙(𝑡, 𝑥): [0, 𝑇 ] × R𝑛 → R1 under condition 𝜙(𝑡, 𝑥) ∈
𝒞1,2
𝑡,𝑥 . A nonrandom function 𝜙(𝑡, 𝑥) is called a first integral of the system (1) if it preserves

a constant value with probability 1 for every realization of a random process 𝑥(𝑡) that is
a solution to this system:

𝜙(𝑡, 𝑥(𝑡, 𝑥(0)) = 𝜙(0, 𝑥(0)) (𝑃 − 𝑎.𝑠.).

A first integral concept for Itô diffusion systems and a stochastic first integral concept
for that systems with jumps were introduced by V. Doobko [1, 2, 3]. Criterions for
determing whether the same function is a first integral for the given SDE system were
obtained in [1, 4].

Remark 1. Both a direct first integral and a back first integral for diffusion system was
introduced by N. Krylov and B. Rozovskiy [5]. Conditions for ones were not established.

Theorem 1. [1] Let 𝑥(𝑡) be a solution to the system of Itô SDE (1) with conditions (2).
A norandom function 𝜙(𝑡, 𝑥) ∈ 𝒞1,2

𝑡,𝑥 is a first integral of system (1) if and only if it satisfies

the conditions:

(1)
𝜕𝜙(𝑡;𝑥)

𝜕𝑡
+

𝜕𝜙(𝑡;𝑥)

𝜕𝑥𝑖

[︁
𝑎𝑖(𝑡;𝑥) − 1

2
𝑏𝑗 𝑘(𝑡;𝑥)

𝜕𝑏𝑖 𝑘(𝑡;x)

𝜕𝑥𝑗

]︁
= 0;

(2) 𝑏𝑖 𝑘(𝑡;𝑥)
𝜕𝜙(𝑡;𝑥)

𝜕𝑥𝑖

= 0, for all 𝑘 ∈ {1, . . . ,𝑚}.

In [6] was represented new conditions for invariant function for diffusion systems. But
really, these conditions are special case of the conditions above [4].
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Theorem 2. Let a function 𝜙(𝑡;𝑥) is a first integral for (1) under conditions (2). Then

for any integrated function 𝜇(𝑡) a function 𝑢(𝑡, 𝑥) = 𝜙(𝑡, 𝑥) −
∫︀ 𝑡

0
𝜇(𝜏) is a first integral

for system (1).
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I. I. GIKHMAN WORKS ON MULTIPARAMETER MARTINGALES

AND RELATED TOPICS

O. I. KLESOV

I. I. Gikhman contribution to probability and stochastic processes is acknowledged,
in the first place, by his development of the theory of stochastic differential equations.
However a considerable part of Gikhman’s scientific activity was directed toward the devel-
opment of the notion and properties of multiparameter martingales. The aim of this talk
is to briefly survey some of I. I. Gikhman’s contributions to the topic of multiparameter
martingales.
The first Gikhman paper on this topic is [2] where, although, he mentions an earlier

publication [1]. Gikhman studies on multiparameter martingales are done independently
of those by Cairoli [20] or Wong and Zakai [21] whom usually the priority is given to. As far
as the question on who is the first to study multiparameter martingales is concerned, my
knowledge of the literature is that K. Krickeberg [19] is that person. However Krickeberg
himself in My Encounters with Martingales, J. Contemporary Math. Anal., 44 (2009),
pp. 9–13, mentioned that J. Dieudonné paper [18] is a source for the paper [19].
I. I. Gikhman’s definition of a multiparameter martingale [2] is slightly different of the

definitions in [20] or in [21]. One of the main differences is that I. I. Gikhman avoids
the so-called condition 𝐴4 and, nevertheless, obtains several important results for multi-
parameter martingales.
Gikhman starts the paper [7] with the sentence “The passage from the theory of mar-

tingales of one argument to that of martingales of two arguments is beset by a number

of difficulties of principle, whereas the passage from two to several arguments is mainly a

problem of the complexity of the notation and formulations”. This explains the Gikhman
concern on the two-parameter case which, he believed, does not restrict the generality.
One of the main difficulties mentioned by Gikhman “. . . consists in the fact that the tech-

nique of stopping moments is not suitable in the two-argument case”.
After the paper [7], I. I. Gikhman enlarged his interest to the topic and studied more

general random fields and solutions of stochastic partial differential equations with the
help of multi-parameter martingales.
Early I. I. Gikhman publications concerning the multi-parameter martingales are [2]–

[7]. Results on extensions to random fields are [8]–[15]. Related papers published by
Gikhman’s former students are [16]–[17]. Some pioneering papers on multiparameter
martingales are [18]–[22].

Acknowledgements. This research is partially supported by the project on Norway-Ukrainian
cooperation in mathematical education Eurasia 2016-Long-term CPEA-LT-2016/10139.
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ALMOST SURE ASYMPTOTIC PROPERTIES OF SOLUTIONS OF

STOCHASTIC DIFFERENTIAL EQUATION WITH SEPARABLE

VARIABLES

O. I. KLESOV, O.A. TYMOSHENKO

Stochastic differential equations are one of the effective models of stochastic processes
that are used in many fields of science such as insurance and financial mathematics,
economics, control theory and many others (see Øksendal [6]).
We study the behior of a solution of the following non-homogeneous stochastic differ-

ential equation with separation of stochastic and deterministic variables

𝑑𝑋(𝑡) = 𝜙(𝑡)𝑔(𝑋(𝑡))𝑑𝑡 + 𝜃(𝑡)𝜎(𝑋(𝑡))𝑑𝑤(𝑡), 𝑡 ≥ 0; (1)

𝑋(0) = 𝑏 > 0.

Here 𝜙, 𝑔, 𝜃, and 𝜎 are some deterministic functions.
The asymptotic behavior of solutions of such equations are esxpressedd in terms of the

related ordinary differential equation

𝑑𝑥(𝑡) = 𝜙(𝑡)𝑔(𝑥(𝑡))𝑑𝑡, 𝑡 ≥ 0;

𝑥(0) = 𝑏 > 0.

The case of a homogeneous equation (i.e. if 𝜙(𝑡) ≡ 1) is considered by Gihman and
Skorohod [3] and Keller et. al [4]. A partial case of equation (1) is investigated by Appleby
et al. [1]. More general cases are studied in [2, 8].
The following function

Φ(𝑡) =

𝑡∫︁
0

𝜙(𝑠)𝑑𝑠, 𝑡 ≥ 0,

is involved in the statement of the result below. We assume that lim
𝑡→∞

Φ(𝑡) = ∞.

A crucial role in our approach is played by the assumption

lim
𝑡→∞

𝑋(𝑡) = ∞ almost surly. (2)

Some general conditions for (2) are given by Klesov and Tymoshenko [5].

Population Growth Model. Consider the Cauchy problem

𝑑𝑋(𝑡) = 𝜙(𝑡)𝑋(𝑡)𝑑𝑡 + 𝛽𝑋(𝑡)𝑑𝑤(𝑡), 𝑡 ≥ 0; 𝑋(0) = 1. (3)

A solution of problem (3) describes the growth of a population with unit initial size (see
[6]), where 𝑋(·) is the size of population at time 𝑡; 𝜙(·) is relative growth rate of the
population that depends on time; 𝑤(·) is a Wiener process; 𝛽 ∈ (0, +∞). Let 𝜙(·) be a
positive continuous function.

Theorem 1. Let 𝑋(·) be a solution of problem (3). Assume that

𝐾 = lim
𝑡→∞

Φ(𝑡)

𝑡
>

1

2
𝛽2,
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Then

lim
𝑡→∞

ln𝑋(𝑡)

Φ(𝑡)
= 1 − 𝛽2

2𝐾
a.s.

Rendleman–Bartter Model. Consider the Cauchy problem for the Rendleman–
Bartter Model (see [7])

𝑑𝑋(𝑡) = 𝜙(𝑡)𝑋(𝑡)𝑑𝑡 + 𝜃(𝑡)𝑋(𝑡)𝑑𝑤(𝑡), 𝑡 ≥ 0; 𝑋(0) = 𝑏 > 0. (4)

Here 𝜙(·) represents an expected instantaneous rate of change in the interest rate, 𝜃(·) is
a volatility parameter, and 𝑤(·) is a Wiener process.

Theorem 2. Let 𝜙(·) and 𝜃(·) be continuous functions and let 𝑋(·) be a solution of

Cauchy problem (4). Assume that

lim
𝑡→∞

1

Φ(𝑡)

𝑡∫︁
0

𝜃2(𝑠)𝑑𝑠 = 𝐿, 𝐿 ∈ [0; ∞); and

∞∑︁
𝑘=0

Φ
(︀
2𝑘+1

)︀
Φ2 (2𝑘)

< ∞.

Then

lim
𝑡→∞

ln𝑋(𝑡)

Φ(𝑡)
= 1 − 1

2
𝐿 a.s.
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ON SOME INTEGRO-DIFFERENTIAL OPERATOR WHICH EXTENDS

TO A GENERATOR OF A FELLER SEMIGROUP

V. KNOPOVA

We consider an integro-differential operator

𝐿𝑓(𝑥) = 𝑏(𝑥) · ∇𝑓(𝑥)

+

∫︁
R𝑑∖{0}

(︁
𝑓(𝑥+ 𝑢)− 𝑓(𝑥)−∇𝑓(𝑥) · 𝑢1|𝑢|≤1

)︁
𝑁(𝑥, 𝑑𝑢),

defined on the space 𝐶2
∞(R𝑑) of twice continuously differentiable functions with vanishing

at infinity derivatives. The drift 𝑏 ∈ R𝑑 is assumed to be bounded and Hölder continuous,

and the Lévy-type kernel 𝑁(𝑥, 𝑑𝑢) is a sum of an 𝛼-stable like part and a lower order

perturbation.

We show that under certain regularity assumptions on the kernel 𝑁 one can associate

with (𝐿,𝐶2
∞(R𝑑)) a Feller process.

The talk is based on the on-going work with A. Kulik and R. Schilling.

TU Dresden, Dresden, Germany
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COALESCING-FRAGMENTATING WASSERSTEIN DYNAMICS ON

THE REAL LINE

VITALII KONAROVSKYI

The discussion will be devoted to an interacting particle system on the real line which
is similar to the Howitt-Warren flow [1, 2]. The main difference is that particles carry
mass which influence their motion. Namely, it is a system of sticky-reflected Brownian
particles on the real line which intuitively can be described as follows. Particles, labeled1

by points from (0,1), start from a countable or uncountable set of massive points and
move as independent Brownian motions with diffusion rates inversely proportional to their
masses. When particles collide, they coalesce creating a new particle (more precisely, a
set of particles occupying the same position) with mass that equals the sum of masses
of the incident particles. After this, each particle experiences a drift force which makes
particles split up. The drift force of a particle 𝑢 ∈ (0, 1) is defined according to a given
interaction potential 𝜉 as follows:

𝜉(𝑢)− 1

𝑚(𝑢, 𝑡)

∫︁
𝜋(𝑢,𝑡)

𝜉(𝑣)𝑑𝑣,

where 𝜉 is a right-continuous non-decreasing function, 𝜋(𝑢, 𝑡) is the set of all particles
which share the same position with the particle 𝑢 and 𝑚(𝑢, 𝑡) = Leb(𝜋(𝑢, 𝑡)) is its mass.
Let 𝑋𝑡(𝑢) denote a position of particle 𝑢 ∈ (0, 1) at time 𝑡. Then the model appears

as a solution to the infinite dimensional SDE with discontinuous coefficients [3, 4] (see
also [5, 6, 7] for the purely coalescent case, i.e. 𝜉 = 0):

𝑑𝑋𝑡 = pr𝑋𝑡
𝑑𝑊𝑡 + (𝜉 − pr𝑋𝑡

𝜉)𝑑𝑡, 𝑋0 = 𝑔 (1)

in the subspace 𝐿↑
2 of non-decreasing functions from 𝐿2 := 𝐿2([0, 1], 𝑑𝑢), where pr𝑓 is

the projection in 𝐿2 on the linear subspace of 𝜎(𝑓)-measurable functions and 𝑑𝑊· is an
𝐿2-white noise. The non-decreasing right-continuous functions 𝜉 and 𝑔 are responsible for
reflection between particles and their positions at the start, respectively.

Theorem 1 ([3]). (i) (existence of solutions) For each 𝛿 > 0, 𝑔 ∈ 𝐿↑
2+𝛿 and 𝜉 ∈ 𝐿↑

∞
there exists a weak solution to SDE (1).

(ii) (existence of a “good” modification) If 𝑔, 𝜉 are piecewise 1
2
+-Hölder continuous,

then there exists a random element 𝑋 = {𝑋(𝑢, 𝑡), 𝑢 ∈ [0, 1], 𝑡 ≥ 0} in the
Skorohod space 𝐷([0, 1], 𝐶([0,∞))) which satisfies the following properties:
(𝑅1) 𝑋(·, 0) = 𝑔;
(𝑅2) for each 𝑢 < 𝑣 from [0, 1] and 𝑡 ≥ 0, 𝑋(𝑢, 𝑡) ≤ 𝑋(𝑣, 𝑡);
(𝑅3) for all 𝑢 ∈ (0, 1) the process

𝑀𝑋(𝑢, 𝑡) := 𝑋(𝑢, 𝑡)− 𝑔(𝑢)−
∫︁ 𝑡

0

(︂
𝜉(𝑢)− 1

𝑚(𝑢, 𝑡)

∫︁
𝜋(𝑢,𝑡)

𝜉(𝑣)𝑑𝑣

)︂
𝑑𝑠, 𝑡 ≥ 0,

is a continuous square integrable martingale with respect to the joint filtration;

1The order between labels and positions of particles on the real line are preserved.

44 «Stochastic Equations, Limit Theorems and Statistics of Stochastic Processes»



(𝑅4) the joint quadratic variation of 𝑀𝑋(𝑢, ·) and 𝑀𝑋(𝑣, ·) equals

[𝑀𝑋(𝑢, ·),𝑀𝑋(𝑣, ·)]𝑡 =
∫︁ 𝑡

0

I{𝑋(𝑢,𝑠)=𝑋(𝑣,𝑠)}

𝑚𝑋(𝑢, 𝑠)
𝑑𝑠,

where 𝑚𝑋(𝑢, 𝑡) := Leb{𝑣 : 𝑋(𝑢, 𝑡) = 𝑋(𝑣, 𝑡)}.
Moreover, the process 𝑋(·, 𝑡), 𝑡 ≥ 0, is a weak solution to (1).

Let 𝑁(𝑡) denote a number of particles at time 𝑡, that is,

𝑁(𝑡) := ‖pr𝑋𝑡
‖2𝐻𝑆 =

{︂
a number of distinct values of
the right-continuous version of 𝑋𝑡

}︂
,

where ‖ · ‖𝐻𝑆 denotes the Hilbert-Schmidt norm.

Theorem 2 ([8]). (i) If 𝑋 solves equation (1), then∫︁ 𝑇

0

𝑁(𝑡)𝑑𝑡 < ∞ a.s.

(ii) If 𝜉 is strictly increasing on some subinterval, then with probability 1 there exists
a dense (random) subset 𝑅 of [0,∞) such that 𝑁(𝑡) = ∞ for all 𝑡 ∈ 𝑅.

The talk is based on joint work with Max von Renesse.
The research was supported by Alexander von Humboldt Foundation.
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DIFFUSION IN MEDIA WITH MEMBRANES AND SOME NONLOCAL

PARABOLIC PROBLEMS

BOHDAN KOPYTKO, ROMAN SHEVCHUK

Consider on plane (𝑠, 𝑥) the strip

Π[0, 𝑇 ] = {(𝑠, 𝑥) : 0 ≤ 𝑠 ≤ 𝑇 ; −∞ < 𝑥 < ∞}
and the two domains (𝑖 = 1, 2)

𝑆
(𝑖)
𝑡 = {(𝑠, 𝑥) ∈ Π[0, 𝑇 ] : 0 ≤ 𝑠 < 𝑡 ≤ 𝑇, ℎ𝑖(𝑠) < 𝑥 < ℎ𝑖+1(𝑠)}

in it, where ℎ𝑗(𝑠), 𝑠 ∈ [0, 𝑇 ], 𝑗 = 1, 2, 3 are the given functions. Put

𝐼1𝑠 = [ℎ1(𝑠), ℎ2(𝑠)), 𝐼2𝑠 = (ℎ2(𝑠), ℎ3(𝑠)], 𝐼𝑠 = 𝐼1𝑠 ∪ 𝐼2𝑠, 𝑆𝑡 = 𝑆
(1)
𝑡 ∪ 𝑆

(2)
𝑡 .

Consider in Π[0, 𝑇 ] two parabolic operators of the second order with bounded continuous
coefficients

𝜕

𝜕𝑠
+ 𝐿(𝑖)

𝑠 ≡ 𝜕

𝜕𝑠
+

1

2
𝑏𝑖(𝑠, 𝑥)

𝜕2

𝜕𝑥2
+ 𝑎𝑖(𝑠, 𝑥)

𝜕

𝜕𝑥
, 𝑖 = 1, 2.

The problem is to find a solution 𝑢(𝑠, 𝑥, 𝑡) ((𝑠, 𝑥) ∈ 𝑆𝑡) of equation

𝜕𝑢

𝜕𝑠
+ 𝐿(𝑖)

𝑠 𝑢 = 0, (𝑠, 𝑥) ∈ 𝑆
(𝑖)
𝑡 , 𝑖 = 1, 2, (1)

which satisfies the ’initial’ condition

lim
𝑠↑𝑡

𝑢(𝑠, 𝑥, 𝑡) = 𝜙(𝑥), 𝑥 ∈ 𝐼𝑡, (2)

two boundary conditions

𝜕𝑢(𝑠, ℎ2𝑖−1(𝑠), 𝑡)

𝜕𝑥
= 0, 0 ≤ 𝑠 < 𝑡 ≤ 𝑇, 𝑖 = 1, 2, (3)

and two conjugation conditions

𝑢(𝑠, ℎ2(𝑠) − 0), 𝑡) = 𝑢(𝑠, ℎ2(𝑠) + 0, 𝑡), 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, (4)

𝑞1(𝑠)
𝜕𝑢(𝑠, ℎ2(𝑠) − 0, 𝑡)

𝜕𝑥
− 𝑞2(𝑠)

𝜕𝑢(𝑠, ℎ2(𝑠) + 0, 𝑡)

𝜕𝑥
+

+

∫︁
𝐼𝑠

[𝑢(𝑠, ℎ2(𝑠), 𝑡) − 𝑢(𝑠, 𝑦, 𝑡)]𝜇(𝑠, 𝑑𝑦) = 0, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇. (5)

The functions 𝑞1(𝑠) and 𝑞2(𝑠) in (5) are nonnegative and such that 𝑞1(𝑠) + 𝑞2(𝑠) > 0, 𝑠 ∈
[0, 𝑇 ]; 𝜇(𝑠, ·) is the nonnegative measure on 𝐼𝑠 such that for any 𝛿 > 0∫︁

𝐼𝛿𝑠

|𝑦 − ℎ2(𝑠)|𝜇(𝑠, 𝑑𝑦) + 𝜇(𝑠, 𝐼𝑠 ∖ 𝐼𝛿𝑠 ) < ∞, 𝑠 ∈ [0, 𝑇 ],

where 𝐼𝛿𝑠 = {𝑦 ∈ 𝐼𝑠 : |𝑦 − ℎ2(𝑠)| < 𝛿}.
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The report is devoted to the study of two related questions: first, establishment of the
classical solvability of the parabolic conjugation problem (1)-(5) by the boundary integral
equations method (under some additional assumptions on its output data) [1, 2] and
the second, construction by means of its solution of the two-parameter Feller semigroup
associated with some inhomogeneous Markov process on the given region of the line. The
union of these two questions represents the so-called problem on pasting together two

diffusion processes given on 𝐼𝑖𝑠 by their generating differential operators 𝐿
(𝑖)
𝑠 , 𝑖 = 1, 2

(see [3]-[7]). This problem can be also treated as the problem on construction of the
mathematical model for the physical phenomenon of diffusion in medium with moving
membranes [2].
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RANDOM OPERATORS RELATED TO A HARRIS FLOW

IA.A. KORENOVSKA

Definition 1. ([2]) A Harris flow with covariance function Γ is a family {𝑥(𝑢, ·), 𝑢 ∈ R}
of Brownian martingales with respect to the joint filtration such that

(1) for any 𝑢 ∈ R 𝑥(𝑢, 0) = 𝑢;
(2) for every 𝑢1, 𝑢2 ∈ R, 𝑢1 ≤ 𝑢2, 𝑡 ≥ 0 𝑥(𝑢1, 𝑡) ≤ 𝑥(𝑢2, 𝑡);
(3) for any 𝑢1, 𝑢2 ∈ R, 𝑡 ≥ 0

< 𝑥(𝑢1, ·), 𝑥(𝑢2, ·) > (𝑡) =

∫︁ 𝑡

0

Γ(𝑥(𝑢1, 𝑠) − 𝑥(𝑢2, 𝑠))𝑑𝑠.

Let Γ be a real continuous nonnegative definite function with spectral distribution
which is not of the pure jump type. It is assumed throughout that Γ is Lipshitz outside
each interval (−𝑐, 𝑐), 𝑐 > 0, Γ(0) = 1, and there exist 𝜀 ∈ (0; 2), 𝑎 > 0 such that for any
𝑢 ∈ R, |𝑢| ≤ 𝑎,

1 − Γ(𝑢) ≥ |𝑢|2−𝜀.

It is proved in [1] that under these conditions the Harris flow exists, and for each 𝑡 > 0
𝑥(R, 𝑡) is a countable set, which means that particles in the Harris flow coalesce.

Define a family {𝑇𝑡, 𝑡 ∈ [0; 1]} of random operators in 𝐿2(R) which describe shifts of
functions along the Harris flow, i.e. for fixed 𝑡 ∈ [0; 1]

(𝑇𝑡𝑓)(𝑢) = 𝑓(𝑥(𝑢, 𝑡))

where 𝑓 ∈ 𝐿2(R), 𝑢 ∈ R.

Remark 1. 𝑇𝑡 is a strong random operator ([3]) in 𝐿2(R) for any 𝑡 ∈ [0; 1] (see [2]).
Consequently, 𝑇𝑡𝑓 is 𝐿2(R)-valued random variable for every 𝑓 ∈ 𝐿2(R), 𝑡 ∈ [0; 1].

For fixed 𝑓 ∈ 𝐿2(R) we consider 𝐿2(R)-valued random process

𝑇 (𝑓) = {𝑇𝑡𝑓, 𝑡 ∈ [0; 1]}
and investigate its properties.

Theorem 1. If 𝑇 (𝑓) has c�̀�dl�̀�g modification then 𝑓 ∈ 𝐿2(R) ∩ 𝐶(R).

Theorem 2. If 𝑓 ∈ 𝐿2(R) ∩ 𝐶(R) then 𝑇 (𝑓) is continuous on [0; 1].

Under condition 𝑓 ∈ 𝐿2(R) ∩ 𝐶(R) the action of random shift operators along the
Harris flow on 𝑓 has a continuous trajectory. To study a change in time of a family
of functions under random operators 𝑇𝑡 one need to know when 𝑇 (𝑓) has a continuous
trajectory simultaneously for 𝑓 from the certain family.

Theorem 3. Let a family of functions Φ ⊂ 𝐶(R) be such that

lim
𝑛→∞

sup
𝑓∈Φ

∫︁
|𝑢|>𝑛

𝑓 2(𝑢)𝑑𝑢 = 0,
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∀𝜀 > 0 ∃𝛿(𝜀) > 0 ∀𝑢1, 𝑢2 ∈ R, |𝑢1 − 𝑢2| < 𝛿(𝜀) sup
𝑓∈Φ

|𝑓(𝑢1) − 𝑓(𝑢2)| < 𝜀.

Then almost surely for any 𝑓 ∈ Φ the random process 𝑇 (𝑓) is continuous on [0; 1].
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NOISE SENSITIVITY OF LÉVY DRIVEN SDE’S: ESTIMATES AND

APPLICATIONS

TETIANA KOSENKOVA

The topic of this talk is induced by the following question: whether the deviation

between the solutions of two different Lévy driven SDE’s can be controlled in terms of

the characteristics of the underlying Lévy processes? In the case of SDE’s with additive

noise we give the estimate for the deviation between the solutions in terms of the coupling

distance for Lévy measures, which is based on the notion of the Wasserstein distance. In

case of Lévy-type processes, whose characteristic triplets are state dependent, we exploit

the fact that every Lévy kernel can be obtained by means of a certain infinite Lévy

measure and the transform function. And under an appropriate set of conditions on the

state dependent characteristic triplet the Lévy-type process can be described as a strong

solution to a Lévy driven SDE with multiplicative noise. The estimate of the deviation

between two Lévy-type processes is given in terms of transportation distance between

the Lévy kernels, which uses the transform functions of the kernels. Such estimates

can be applied to the analysis of the low-dimensional conceptual climate models with

paleoclimate data.
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STOCHASTIC PROCESSES FROM THE SPACES F𝜓(Ω). CONDITIONS
FOR THE WEAK CONVERGENCE

YURII KOZACHENKO, YURII MLAVETS

Definition 1. [1] We say that the condition H is fulfilled for the Banach space of random
variables 𝐵(Ω), if there exists an absolute constant 𝐶𝐵 such that for any centered and
independent random variables 𝜉1, 𝜉2, . . . , 𝜉𝑛 from 𝐵(Ω), the following is true:⃦⃦⃦⃦

⃦
𝑛∑︁
𝑖=1

𝜉𝑖

⃦⃦⃦⃦
⃦
2

≤ 𝐶𝐵

𝑛∑︁
𝑖=1

‖𝜉𝑖‖2 .

The constant 𝐶𝐵 is called a scale constant for the space 𝐵(Ω). For space F𝜓(Ω) we
shall denote the constants 𝐶F𝜓(Ω) as 𝐶𝜓.

Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ 𝑇} be a stochastic process from the space F𝜓(Ω), 𝐸𝑋(𝑡) = 0. Let
the condition H be fulfilled for this space.

Assume that compact pseudometric space (𝑇, 𝜌𝜓), 𝜌𝜓(𝑡, 𝑠) = ‖𝑋(𝑡) −𝑋(𝑠)‖𝜓 is sepa-
rable and the process 𝑋 = {𝑋(𝑡), 𝑡 ∈ 𝑇} is separable as well. Let 𝑋𝑘(𝑡), 𝑘 = 1, 2, . . . , 𝑛
be independent copies of 𝑋(𝑡). Consider a stochastic process 𝑌𝑛(𝑡) = 1√

𝑛

∑︀𝑛
𝑘=1 𝑋𝑘(𝑡). By

Definition (1) we have ‖𝑌𝑛(𝑡) − 𝑌𝑛(𝑠)‖2𝜓 ≤ 𝐶𝜓
1
𝑛

∑︀𝑛
𝑘=1 ‖𝑋𝑘(𝑡) −𝑋𝑘(𝑠)‖2𝜓 = 𝐶𝜓𝜌

2
𝜓(𝑡, 𝑠).

The pseudometric space (𝑇, 𝜌𝜓) is separable and the processes 𝑌𝑛(𝑡) are separable in
this space.

Theorem 1. [1] If the following condition holds

𝜀0 = sup
𝑡,𝑠∈𝑇

‖𝑋(𝑡) −𝑋(𝑠)‖𝜓 < ∞,

and for any 𝜏 > 0 ∫︁ 𝜏

0

𝜅𝜓(�̃�(𝑢))𝑑𝑢 < ∞,

where 𝜅𝜓(𝑛) is the 𝑀-characteristic of the space F𝜓(Ω), �̃�(𝜀) is the metric massiveness of

the space (𝑇, 𝜌𝜓), then 𝑌𝑛(𝑡) converge weakly in C(𝑇, 𝜌𝜓) to the Gaussian process 𝑋∞(𝑡)
such that 𝐸𝑋∞(𝑡) = 0, 𝐸𝑋∞(𝑡)𝑋∞(𝑠) = 𝐸𝑋(𝑡)𝑋(𝑠).
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REAL STATIONARY GAUSSIAN PROCESSES WITH STABLE

CORRELATION FUNCTIONS

YURII KOZACHENKO, MARYNA PETRANOVA

Real stationary processes with stable correlation functions, distribution of some func-
tionals of these processes and some of their properties are considered.

We continue the study of work [3], which dealt with complex Gaussian processes with
a stable correlation function. Stationary processes with a stable correlation function are
considered, in particular, the distribution of some functionalities from these processes and
some of their properties. For other processes, similar tasks were considered in [2, 1, 4, 5].

Definition 1. The real stationary Gaussian process 𝑋𝛼 = {𝑋𝛼(𝑡), 𝑡 ∈ R}, 0 < 𝛼 ≤ 2,
such that 𝐸𝑋𝛼(𝑡) = 0, 𝜌𝛼(ℎ) := 𝐸𝑋𝛼(𝑡 + ℎ)𝑋𝛼(𝑡) = 𝐵2𝑒𝑥𝑝 {−𝑑|ℎ|𝛼}, 𝛼 > 0, 𝑑 > 0 is
called a real Gaussian stationary process with a stable correlation function.

Theorem 1. Let 𝑋𝛼 be a real separable Gaussian stationary process with a stable corre-
lation function. Then for any −∞ < 𝑎 < 𝑏 < +∞, 0 < 𝜃 < 1, 𝛽 < min

(︀
1, 𝛼

2

)︀
, 𝜖 > 0 the

inequality is fulfilled:

𝑃

{︃
sup
𝑡∈[𝑎,𝑏]

|𝑋(𝑡)| > 𝜖

}︃
≤ 𝑒𝑥𝑝

{︃
−𝜖2(1− 𝜃)2

2𝐵2

}︃
· 21/𝛽−1

(︃
(𝑏− 𝑎)(

√
2𝑑)2/𝛼

𝜃2/𝛼
(︁
1− 2𝛽

𝛼

)︁1/𝛽 + 1

)︃
(1)

Theorem 2. Let 𝑋𝛼 = {𝑋𝛼(𝑡), 𝑡 ∈ R} be a real Gaussian stationary process with a sta-
ble correlation function (see Definition 1), 𝐶 = {𝐶(𝑡), 𝑡 ≥ 0} - monotonically increasing
function, such that 𝐶(𝑡) ≥ 1, 𝑡 ≥ 0 and 𝐶(𝑡) → ∞ by 𝑡 → ∞; 𝑏0, 𝑏1, 𝑏2, ..., 𝑏𝑘 - such a
sequence that 𝑏0 = 0, 𝑏𝑘 < 𝑏𝑘+1, and 𝑏𝑘 → ∞ by 𝑘 → ∞, 𝑟0, 𝑟1, 𝑟2, ..., 𝑟𝑘 such a sequence
that 𝑟𝑘 > 1 and

∑︀∞
𝑘=0

1
𝑟𝑘

= 1, 𝐶𝑘 = 𝐶(𝑏𝑘), 𝑘 = 0, 1, 2... and the following conditions be
fulfilled:

∞∑︁
𝑘=0

𝑟𝑘
𝐶2

𝑘

< ∞,

∑︀∞
𝑘=0

1
𝑟𝑘
(𝑏𝑘+1 − 𝑏𝑘)

𝛾 < ∞, where 𝛾 ∈ (0, 1). Then for any 0 < 𝜃 < 1, 𝜖 > 0 the following
inequality holds:

𝑃

{︂
sup
𝑡≥0

|𝑋𝛼(𝑡)|
𝐶(𝑡)

> 𝜖

}︂
≤ 2

4
𝛼
−1𝑒𝑥𝑝

{︃
− 𝜖2(1− 𝜃)2

2𝐵2
∑︀∞

𝑘=0
𝑟𝑘
𝐶2

𝑘

}︃
·

·𝑒𝑥𝑝

{︃
1

𝜃𝛾/2 · 𝛾𝛾
· (
√
2𝑑)

2𝛾
𝛼 · 2

4𝛾
𝛼

∞∑︁
𝑘=0

1

𝑟𝑘
(𝑏𝑘+1 − 𝑏𝑘)

𝛾

}︃
(2)
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Definition 2. Random process 𝑋(𝑡), 𝑡 ∈ [𝑎, 𝑏], is called differentiable in mean square, if
there exists a limit (in mean square)

𝑙.𝑖.𝑚.ℎ→0
𝑋(𝑡+ ℎ)−𝑋(𝑡)

ℎ
= 𝑋 ′(𝑡)

If this limit exists, then 𝑋 ′(𝑡) is called a mean square derivative of the process 𝑋(𝑡).

Theorem 3. Let 𝑋𝛼(𝑡), 𝑡 ∈ [𝑎, 𝑏], be a stationary process with stable correlation function
(not necessarily Gaussian). Then for 0 < 𝛼 < 2 the mean square derivatives do not exist,
and for 𝛼 = 2 the derivative exists and

𝐸𝑋 ′
2(𝑡)𝑋

′
2(𝑠) = 𝐵2𝑒𝑥𝑝 {−𝑑(𝑡− 𝑠)} ·

(︁
4𝑑2 · (𝑡− 𝑠)2 + 2𝑑

)︁
i.e. 𝑋 ′

2(𝑡) is a stationary process with correlation function

𝐸𝑋 ′
2(𝑡+ 𝜏)𝑋 ′

2(𝑡) = 𝐵2𝑒𝑥𝑝
{︀
−𝑑|𝜏 |2

}︀
·
(︁
4𝑑2 · 𝜏 2 + 2𝑑

)︁
(3)
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BAXTER TYPE THEOREM FOR GENERALIZED GAUSSIAN

PROCESSES WITH INDEPENDENT VALUES

S.M. KRASNITSKIY, O.O. KURCHENKO

Let 𝐾 be the space of compactly supported infinitely differentiable functions on the
interval (−∞,∞). The covariation functional 𝐵(𝜙, 𝜓) of a generalized random process 𝜉
with independent values on 𝐾 (𝜉 = (𝜉, 𝜙), 𝜙 ∈ 𝐾) admits representation

𝐵(𝜙, 𝜓) =

∫︁ ∞

−∞

∑︁
𝑘,𝑗≥0

𝐵𝑘𝑗(𝑥)
𝑑𝑘𝜙(𝑥)

𝑑𝑥𝑘
· 𝑑

𝑗𝜓(𝑥)

𝑑𝑥𝑗
𝑑𝑥, 𝜙, 𝜓 ∈ 𝐾, (1)

in which 𝐵𝑘,𝑗(𝑥) are continuous on the interval (−∞,∞) functions, and in each bounded
interval only the finite number of functions 𝐵𝑘,𝑗(𝑥) are other than identical zero [1]. We
will consider the process 𝜉 on the set 𝐾 ([0, 1]) which is the subspace of 𝐾, formed by
the functions 𝜙 ∈ 𝐾 with supports in the interval (0, 1), and as functions 𝐵𝑘,𝑗(𝑥) for this
restriction 𝜉 we take constants. In this case, using the integration by parts and taking
into account the symmetry of the real bilinear functional 𝐵(𝜙, 𝜓) the expression (1) as a
functional on 𝐾 ([0, 1]) admits the representation

𝐵(𝜙, 𝜓) =
𝑁∑︁
𝑗=0

𝑐𝑗
𝑑𝑗𝜙(𝑥)

𝑑𝑥𝑘
· 𝑑

𝑗𝜓(𝑥)

𝑑𝑥𝑗
𝑑𝑥, 𝜙, 𝜓 ∈ 𝐾(0, 1), (2)

where 𝑐𝑗 are (constant) coefficients, 𝑗 = 0, . . . , 𝑁 ;𝑁 < +∞.
We note that the partial case of the process 𝜉 is a well–known generalized "white noise"

process, which has a covariation functional that coincides with the summand on the right
side (2) for 𝑘 = 𝑗 = 0 (and all 𝜙, 𝜓 ∈ 𝐾).
We assume that 𝐵(𝜙, 𝜓) for 𝜙, 𝜓 ∈ 𝐾(0, 1) is represented exactly in the form (2), and

the process 𝜉 is Gaussian with zero mean value. As in [2], the expression

𝑆𝑛(𝜉) =

𝑏(𝑛)−1∑︁
𝑘=0

(𝜉, 𝛼𝑘,𝑛)
2 ,

where {𝑏(𝑛), 𝑛 = 1, 2, . . .} is a non-decreasing integer numbers sequence, 𝑏(𝑛) −−−→
𝑛→∞

∞,

and 𝛼𝑘,𝑛 = 𝛼𝑘,𝑛(·) ∈ 𝐾 is a function with a support in the interval
(︁

𝑘
𝑏(𝑛)

, 𝑘+1
𝑏(𝑛)

)︁
, we call a

Baxter sum.
Our report explicitly presents a family of functions {𝛼𝑘,𝑛} such that for the Baxter sum

of the process 𝜉 we have a limit relation

lim
𝑛→∞

𝑆𝑛(𝜉) = 𝑐𝑁 , (3)

where the convergence takes place in square mean. If the series
∑︀∞

𝑛=1 (𝑏(𝑛))
−1 is conver-

gent, then we have also the almost sure convergence in (3).
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We note that the coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑁−1 cannot be defined by the limit values of
the Baxter sums of the process 𝜉 with 𝑐𝑁 ̸= 0. The latter follows from the results of work
[3].
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CONVERGENCE OF SKEW BROWNIAN MOTIONS WITH LOCAL
TIMES AT SEVERAL POINTS THAT ARE CONTRACTED INTO A

SINGLE ONE

IVAN H. KRYKUN

We consider the skew Brownian motion as a solution of the stochastic equation with
local times at 𝑁 points and with coefficients depending on the parameter 𝑛

𝜉𝑛(𝑡) = 𝛽1(𝑛)𝐿
𝜉𝑛(𝑡, 0) +

𝑁∑︁
𝑖=2

𝛽𝑖(𝑛)𝐿
𝜉𝑛(𝑡, 𝑎𝑖(𝑛)) + 𝑤(𝑡), 𝑡 ∈ [0, 𝑇 ]. (1)

We will study the question about the convergence of solutions of the stochastic equation
(1) under the condition that, as the parameter 𝑛 → ∞, the coefficients of the local times
𝛽𝑖(𝑛) tend, in this case, to their limit values 𝛽𝑖 (𝑖 = 1, ..., 𝑁), respectively, and the points
𝑎𝑖(𝑛) tend to 0 (𝑖 = 2, ..., 𝑁).
For the skew Brownian motion (1), we introduce the following condition.

Condition ( I ).

∙ |𝛽𝑖(𝑛)| < 1 for all 𝑛 and 𝑖 = 1, ..., 𝑁 .
∙ There exist constants 𝛽𝑖 such that |𝛽𝑖| < 1, 𝑖 = 1, ..., 𝑁 , and

lim
𝑛→∞

𝛽𝑖(𝑛) = 𝛽𝑖, 𝑖 = 1, ..., 𝑁.

∙ 𝑎𝑖(𝑛) > 0 for all 𝑛, 𝑖 = 2, ..., 𝑁 .
∙ 𝑎𝑖(𝑛) ̸= 𝑎𝑗(𝑛) for 𝑖 ̸= 𝑗 for all 𝑛, 𝑖, 𝑗 = 2, ..., 𝑁 .
∙ For 𝑖 = 2, ..., 𝑁 condition lim

𝑛→∞
𝑎𝑖(𝑛) = 0 holds.

Theorem. [1, Theorem 1]. Let condition ( I ) be satisfied for Eq. (1). Then the conver-
gence of the processes of the skew Brownian motion (1) to the limit process

𝜉(𝑡) = 𝛾𝐿𝜉(𝑡, 0) + 𝑤(𝑡), 𝑡 ∈ [0, 𝑇 ],

holds in mean uniformly in time, as 𝑛 → ∞. The coefficient 𝛾 of the local time of the
limit process 𝜉(𝑡) is given by the formula

𝛾 =

𝑁∏︁
𝑖=1

(1 + 𝛽𝑖)−
𝑁∏︁
𝑖=1

(1− 𝛽𝑖)

𝑁∏︁
𝑖=1

(1 + 𝛽𝑖) +
𝑁∏︁
𝑖=1

(1− 𝛽𝑖)

. (2)

Let us denote a hyperbolic tangent of 𝑥 by tanh𝑥 and an areatangent (inverse hyperbolic
tangent) of 𝑥 by artanh𝑥.
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Remark 1. The coefficient 𝛾 of the local time of a limit process, given by formula (2), also
can be found by the equivalent formula

𝛾 = tanh
(︁ 𝑁∑︁

𝑖=1

artanh 𝛽𝑖

)︁
, (3)

Example. Consider the skew Brownian motion with local times at two points that are
contracted into a single one:

𝜉𝑛(𝑡) = 𝛽1(𝑛)𝐿
𝜉𝑛(𝑡, 0) + 𝛽2(𝑛)𝐿

𝜉𝑛(𝑡, 𝑎(𝑛)) + 𝑤(𝑡), 𝑡 ∈ [0, 𝑇 ].

Let it satisfy the condition ( I ). What is the limit process?
According to theorem, the limit process is

𝜉(𝑡) =
𝛽1 + 𝛽2

1 + 𝛽1𝛽2

𝐿𝜉(𝑡, 0) + 𝑤(𝑡), 𝑡 ∈ [0, 𝑇 ].

Remark 2. Similar issues are considered in [2], [3].

Acknowledgements. In memory of Yurij V. Matushchak and thousands of Ukrainian
volunteers and soldiers, who stopped Russian aggression in South-Eastern Ukraine and
saved millions of people, including the author.
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CONSISTENCY OF TOTAL LEAST SQUARES ESTIMATOR IN

VECTOR LINEAR ERRORS-IN-VARIABLES MODEL WITH

INTERCEPT

ALEXANDER KUKUSH

An implicit linear errors-in-variables model is considered. Within this observation
model, the true points are nonrandom, belong to a linear manifold (of known dimension)
in a Euclidean space, and are observed with additive errors. The total error covariance
matrix is proportional to the identity matrix, with unknown factor of proportionality.
The normality of errors is not assumed, and it is not demanded that the error vectors are
independent and identically distributed.
The orthogonal regression estimator (ORE) of the manifold is studied, which in the case

of normal errors coincides with the maximum likelihood estimator. Sufficient conditions
are presented for the consistency and strong consistency of the ORE, as the sample size
tends to infinity.
The results are applied to an explicit linear errors-in-variables model with intercept,

where covariates are vectors and the response is a vector as well. The latter model is
embedded into the implicit model with intercept, and as a result the ORE of the manifold
yields the total least squares (TLS) estimator of the regression function. The conditions
for consistency of the TLS estimator of intercept and of matrix regression parameter are
stated separately.
A particular case, where the underlying manifold is a hyperplane and the corresponding

explicit model describes multiple regression with scalar response, is investigated in [1].
Results of the talk are joint with M.S. student Oleksandr Dashkov (Kyiv).
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ASYMPTOTIC ANALYSIS OF MULTI-SCALE LÉVY DRIVEN

STOCHASTIC SYSTEMS

ALEXEI KULIK

A new method will be presented, well suitable for the study of averaging/diffusion
approximation phenomena in multi-scale stochastic systems, including the so called fully

coupled systems, which are physically most relevant and technically most involved. This
time delay method, introduced in [1], does not use corrector terms and thus does not require
auxiliary Poisson equations to be solved, which makes it well applicable to the systems
with complicated local structure, including the systems driven by Lévy noises. In the
talk, a diffusion approximation theorem for a fully coupled Lévy driven stochastic system
will be presented, together with ergodicity, regularity, and sensitivity issues, substantially
used in the entire construction. Particular examples of multi-scale stochastic versions of
the Cucker-Smale flocking model and the non-linear friction model will be discussed.
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FRACTIONAL PEARSON DIFFUSIONS AND CONTINUOUS TIME

RANDOM WALKS

N. LEONENKO

We define fractional Pearson diffusions [5,7,8] by non-Markovian time change in the cor-
responding Pearson diffusions [1,2,3,4] inspiring ideas of I.I. Gikhman and A.V.Skorokhod.
They are governed by the time-fractional diffusion equations with polynomial coefficients
depending on the parameters of the corresponding Pearson distribution. We present
the spectral representation of transition densities of fractional Pearson diffusions, which
depend heavily on the structure of the spectrum of the infinitesimal generator of the
corresponding non-fractional Pearson diffusion. Also, we present the strong solutions of
the Cauchy problems associated with heavy-tailed fractional Pearson diffusions and the
correlation structure of these diffusions [6].
We define the correlated continuous time random walks (CTRWs) that converge to

fractional Pearson diffusions (fPDs) [9]. The jumps in these CTRWs are obtained from
Markov chains through the Bernoulli urn-scheme model and Wright-Fisher model. The
jumps are correlated so that the limiting processes are not Lévy but diffusion processes
with non-independent increments. The waiting times are selected from the domain of
attraction of a stable law.
This is a joint work with M. Meerschaert (Michigan State University, USA), I. Papic

(University of Osijek, Croatia), N. Suvak (University of Osijek, Croatia) and A. Sikorskii
(Michigan State University and Arizona University, USA).
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SURVIVAL ANALYSIS BY MIXTURES WITH VARYING

CONCENTRATIONS

ROSTYSLAV MAIBORODA

Random right-censoring is a standard probabilistic model for survival data description.
The Kaplan-Meyer estimator is usually used for nonparametric estimation of survival
time distribution in this model. We consider a modification of this estimator for the
case when the observed data were obtained from a mixture of components with different
distributions. Such modifications were considered in the papers [1, 4] in the case of known
varying concentrations (mixing probabilities) in the mixture. (See [3] on mixture models
with varying concentrations).
Let us present a motivating example of problem in which these estimates can be applied.
Let there be medical statistics data on the course of an ontological disease for some

set of patients. We are interested in the distribution of duration of remission (𝜉) for this
disease. Here remission is the interval between the surgery on the tumor removal and the
relapse. Note that the remission duration can be from several weeks to several decades.
Some patients may fell out of our sight at the remission interval, so the data are

randomly right censored. I.e. we observe 𝜉* = min(𝜉, 𝐶) and 𝛿 = 1{𝜉 < 𝐶}, where 𝐶 is
the censoring time (censor), 𝛿 is the indicator of non-censoring. Suppose that we have got
such data on many patients for a long time (say, 50 years). Earlier it was assumed that
all the considered patients have the same disease. But 5 years ago it was observed that
such tumors can be caused by two different genetic causes (mutations in different loci).
So, from the modern point of view, there are two diseases types (A and B) of which any
our patient could suffer.
The true type of the disease can be identified by a DNA-analysis of the tumor. This

can be done for the modern patients (patients of last 5 years). But we can’t estimate, say
the probability that the remission duration for type-A patients will exceed 10 years. We
didn’t observe the modern patients for 10 years!
We have a lot of old data (on patients cured 50 years ago). But it is impossible to

identify uniquely the type of these patients’ disease. On the other hand, the medical
records for them contain information on some symptoms of their illness. Comparing this
information with the symptoms of the modern patients, we can estimate probabilities that
a patient from the old records had a disease of type A (or B).
So, in this example we deal with a mixture of two components (A and B) and the

probability of a subject (patient) to belong to a given component is known (estimated).
At the same time the data on the variable of interest (the remission duration) are censored.
Our aim is to utilize such information for estimation of the distribution of remission

duration for the disease of a specified type.
In the presentation we will discuss the asymptotic behavior of the modified Kaplan-

Meyer estimators for mixtures and their application for hypotheses testing.
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CONES GENERATED BY RANDOM POINTS ON HALF-SPHERES AND

CONVEX HULLS OF POISSON POINT PROCESSES

ALEXANDER MARYNYCH

Let 𝑑 ≥ 1 be a fixed positive integer and let 𝑈1, 𝑈2, . . . be independent random points
distributed according to the uniform distribution on the 𝑑-dimensional upper half-sphere

S𝑑
+ := {(𝑥0, 𝑥1, . . . , 𝑥𝑑) ∈ R𝑑+1 : 𝑥2

0 + 𝑥2
1 + . . . + 𝑥2

𝑑 = 1, 𝑥0 ≥ 0}.
We are interested in the random convex cone in R𝑑+1 defined as the positive hull of
𝑈1, . . . , 𝑈𝑛, 𝑛 ≥ 𝑑 + 1, that is

𝐶𝑛 = pos{𝑈1, . . . , 𝑈𝑛} := {𝛼1𝑈1 + . . . + 𝛼𝑛𝑈𝑛 : 𝛼1, . . . , 𝛼𝑛 ≥ 0}.
The random cone, or, more precisely, the random spherical polytope 𝐶𝑛 ∩ S𝑑

+, has been
studied by Bárány et al. [1]. Some of their results concern the expected 𝑓 -vector of 𝐶𝑛,
that is, the expected number E𝑓𝑘(𝐶𝑛) of 𝑘-dimensional faces of 𝐶𝑛, 𝑘 ∈ {1, . . . , 𝑑}. In
particular, by Theorem 7.1 in [1] the expected number of one-dimensional faces of 𝐶𝑛 (or,
equivalently, vertices of 𝐶𝑛 ∩ S𝑑

+) satisfies

lim
𝑛→∞

E𝑓1(𝐶𝑛) = 𝐶(𝑑)𝜋𝑑+1

(︂
2

𝜔𝑑+1

)︂𝑑+1

𝜔𝑑, (1)

where a constant 𝐶(𝑑) is given in form of a multiple integral; see [1, Equation (22)] and 𝜔𝑑

is the (𝑑− 1)-dimensional Hausdorff measure (surface area) of the unit sphere S𝑑−1 ⊂ R𝑑,
that is

𝜔𝑑 =
2𝜋

𝑑
2

Γ
(︀
𝑑
2

)︀ .
This surprising result, which says that the expected number of one-dimensional faces of
𝐶𝑛 remains bounded as the size of the sample tends to infinity, is the starting point for
our work.
Our first main result is a weak limit theorem for the sections of the random cones

(𝐶𝑛)𝑛∈N with the tangent hyperplane of the half-sphere at its north pole. Let 𝑇𝑛 : R𝑑+1 →
R𝑑+1 be the mapping defined by

𝑇𝑛(𝑥0, 𝑥1, . . . , 𝑥𝑑) := (𝑛𝑥0, 𝑥1, . . . , 𝑥𝑑).

Let 𝐻1 be the hyperplane {𝑥0 = 1} in R𝑑+1. Note that 𝐻1 is tangent to the half-sphere
S𝑑
+ at its north pole. Let 𝑒0 be the unit vector (1, 0, . . . , 0) ∈ R𝑑+1 pointing to the north

pole. To describe the limit, take some 𝛾 > 0, 𝑐 > 0, and let Π𝑑,𝛾(𝑐) be a Poisson point
process on R𝑑∖{0} whose intensity measure is absolutely continuous with respect to the
Lebesgue measure and whose density function is given by

𝑥 ↦→ 𝑐

𝜔𝑑+𝛾

1

‖𝑥‖𝑑+𝛾
, 𝑥 ∈ R𝑑∖{0}, (2)

where ‖𝑥‖ is the Euclidean norm of 𝑥. Note that the number of points of Π𝑑,𝛾(𝑐) out-
side any ball centered at the origin having strictly positive radius is almost surely finite
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(because the intensity is integrable near ∞), while the number of points inside any such
ball is infinite with probability one (because the integral of the intensity over such balls
diverges). We denote by conv Π𝑑,𝛾(𝑐) the convex hull of all points of Π𝑑,𝛾(𝑐). Even though
Π𝑑,𝛾(𝑐) almost surely consists of infinitely many points, the random convex set conv Π𝑑,𝛾(𝑐)
turns out to be almost surely a polytope. The next theorem identifies the weak limit of
the rescaled random polytopes (𝑇𝑛𝐶𝑛 ∩ 𝐻1) − 𝑒0 in terms of a Poisson point process of
the type just discussed.

Theorem 1. As 𝑛 → ∞, the random polytopes (𝑇𝑛𝐶𝑛 ∩𝐻1)− 𝑒0 converge in distribution

to conv Π𝑑,1(2) on the space of compact convex subsets of R𝑑 endowed with the Hausdorff

metric.

From Theorem 1 we shall derive the following result on the distributional convergence of
the 𝑓 -vector of the random spherical polytope 𝐶𝑛∩S𝑑

+. Note that 𝑓𝑘(𝐶𝑛∩S𝑑
+) = 𝑓𝑘+1(𝐶𝑛).

Theorem 2. As 𝑛 → ∞, we have that(︀
𝑓0(𝐶𝑛 ∩ S𝑑

+), . . . , 𝑓𝑑−1(𝐶𝑛 ∩ S𝑑
+)
)︀ d−→ (𝑓0(conv Π𝑑,1(2)), . . . , 𝑓𝑑−1(conv Π𝑑,1(2))) ,

where
d−→ denotes convergence in distribution.

We shall argue also that the expected 𝑓 -vector of the spherical random polytope 𝐶𝑛∩S𝑑
+

converges to that of conv Π𝑑,1(2). Even more generally, we shall prove the convergence of
moments of all orders. This generalizes the results from [1] discussed above and answers
– in an extended form – a question raised in [1, Section 9].

Theorem 3. For every 𝑘 ∈ {1, . . . , 𝑑} and every 𝑚 ∈ N we have

lim
𝑛→∞

E𝑓𝑚
𝑘 (𝐶𝑛) = lim

𝑛→∞
E𝑓𝑚

𝑘−1(𝐶𝑛 ∩ S𝑑
+) = E𝑓𝑚

𝑘−1(conv Π𝑑,1(2)).

The next theorem deals with the solid angle of 𝐶𝑛. Let �̄� be the 𝑑-dimensional spherical
Lebesgue measure on the unit sphere S𝑑 ⊂ R𝑑+1 normalized such that �̄�(S𝑑) = 1. The
solid angle 𝛼(𝐶𝑛) of the convex cone 𝐶𝑛 is defined by

𝛼(𝐶𝑛) := �̄�(𝐶𝑛 ∩ S𝑑).

Theorem 4. As 𝑛 → ∞, we have that

𝑛

(︂
1

2
− 𝛼(𝐶𝑛)

)︂
d−→ 1

𝜔𝑑+1

∫︁
R𝑑∖ convΠ𝑑,1(2)

d𝑣

‖𝑣‖𝑑+1
.

This talk is based on a recent joint work [2] with Z. Kabluchko, D. Temesvari and
C. Thäle.
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STATISTICAL CHALLENGES IN NEUROSCIENCE: HOW TO DEAL

WITH DEGENERATE NOISE IN MULTIDIMENSIONAL SDES

ANNA MELNYKOVA

When the dimensionality of the Brownian motion of the process is lower than the
dimensionality of the process itself, we face a very specific type of stochastic processes.
Under certain conditions, despite the singular diffusion matrix, the noise is still propagated
through all the system: this phenomena leads us to a class of hypoelliptic diffusions.
They often arise in modeling of neuronal activity: for example, it is proved in Ditlevsen

and Löcherbach (2017) that the mean-field limit of Hawkes processes, describing the in-
teractions of multiple populations of neurons, is approximated by a stochastic hypoelliptic
diffusion. Further, models of this type are also used to describe a firing mechanism of a
neuron: see, for example, Leon and Samson (2017).
To be more precise, we restrict our attention to the most simple, two-dimensional case.

Consider SDE of the form:{︃
𝑑𝑋𝑡 = 𝑎1(𝑋𝑡, 𝑌𝑡)𝑑𝑡

𝑑𝑌𝑡 = 𝑎2(𝑋𝑡, 𝑌𝑡)𝑑𝑡+ 𝑏(𝑋𝑡, 𝑌𝑡)𝑑𝑊𝑡,
(1)

where (𝑋𝑡, 𝑌𝑡)
𝑇 ∈ R × R, (𝑎1(𝑋𝑡, 𝑌𝑡), 𝑎2(𝑋𝑡, 𝑌𝑡))

𝑇 is the drift term, (0, 𝑏(𝑋𝑡, 𝑌𝑡))
𝑇 is the

diffusion coefficient, (𝑑𝑊𝑡) is a standard Brownian motion defined on some probability
space.
The goal of this talk is to discuss several problems assosiated with hypoelliptic system

(1): first, we bring to the light a problem of a numerical approximation of such pro-
cesses. This issue is tightly bounded with a parametric inference for discretely observed
processes and is treated, under assumptions of ergodicity and hypoellipticity, by Samson
and Thieullen (2012), Ditlevsen and Samson (2017), Melnykova (2018).
In more global sense, we are interested in how good this model can fit some specific data

— for example, intracellular recordings of neuronal activity. This, among other things,
includes developing statistical tests for estimating the dimensionality of the noise (see,
in particular, Jacod et al. (2013)). We briefly discuss the perspectives, and conclude our
study with some numerical examples.

Acknowledgements. Author’s work is financially supported by LABEXMME-DII and Lab-
oratoire Jean Kuntzmann (UMR CNRS 5224).
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LARGE DEVIATIONS OF RESIDUAL CORRELOGRAM AS

ESTIMATOR OF THE NOISE UNKNOWN COVARIANCE FUNCTION

K.K. MOSKVYCHOVA

Consider the observation model

𝑋(𝑡) = 𝑔(𝑡, 𝜃) + 𝜀(𝑡), 𝑡 ≥ 0,

where 𝑔 : (−𝛾,∞)×Θ𝛾 → R is a sufficiently smooth function depending on the unknown
parameter 𝜃 = (𝜃1, ..., 𝜃𝑞) ∈ Θ ⊂ R𝑞, Θ is a bounded open convex set, Θ𝛾 =

⋃︀
‖𝑎‖<1

(Θ+𝛾𝑎),

𝛾 > 0 is some number.
I. 𝜀 = {𝜀(𝑡), 𝑡 ∈ R} is a mean-square and almost sure continuous stationary Gaussian

process defined on the probability space (Ω,F, 𝑃 ), E𝜀(0) = 0, with covariance function
𝐵(·) ∈ 𝐿1(R).

The LSE of the parameter 𝜃 ∈ Θ is defined as the random vector ̂︀𝜃𝑇 = (̂︀𝜃1𝑇 , . . . ̂︀𝜃𝑞𝑇 ) ∈ Θ𝑐

with the property

𝑄𝑇 (̂︀𝜃𝑇 ) = min
𝜏∈Θ𝑐

𝑄𝑇 (𝜏), 𝑄𝑇 (𝜏) =

𝑇∫︁
0

[𝑋(𝑡) − 𝑔(𝑡, 𝜏)]2𝑑𝑡.

As an estimator of 𝐵 tied to the estimator ̂︀𝜃𝑇 of the nuisance parameter 𝜃 we take

the residual correlogram constructed by residuals ̂︀𝑋(𝑡) = 𝑋(𝑡) − 𝑔(𝑡, ̂︀𝜃𝑇 ), 𝑡 ∈ [0, 𝑇 + 𝐻],
namely:

𝐵𝑇 (𝑧, ̂︀𝜃𝑇 ) = 𝑇−1

𝑇∫︁
0

̂︀𝑋(𝑡 + 𝑧) ̂︀𝑋(𝑡)𝑑𝑡, 𝑧 ∈ [0, 𝐻],

𝐻 > 0 is a fixed number.

Let 𝑑𝑇 (𝜃) = 𝑑𝑖𝑎𝑔(𝑑𝑖𝑇 (𝜃), 𝑖 = 1, 𝑞), 𝑑2𝑖𝑇 (𝜏) =
𝑇∫︀
0

(
𝜕

𝜕𝜏𝑖
𝑔(𝑡, 𝜏))2𝑑𝑡.

Write also 𝑓0 = max
𝜆∈R

𝑓(𝜆) < ∞, where 𝑓(𝜆), 𝜆 ∈ R, is a spectral density of 𝜀.

II. There exist numbers 𝑐0 > 0, 𝑐1 > 0 such that for any 𝜃 ∈ Θ and 𝑢, 𝑣 ∈ 𝑈𝑇 (𝜃) =
𝑑𝑇 (𝜃)(Θ𝑐 − 𝜃) for 𝑇 > 𝑇0 (𝑇0 doesn’t depend on 𝜃)

𝑐0‖𝑢− 𝑣‖2 ≤
𝑇∫︁

0

(︀
𝑔(𝑡, 𝜃 + 𝑑−1

𝑇 (𝜃)𝑢) − 𝑔(𝑡, 𝜃 + 𝑑−1
𝑇 (𝜃)𝑣)

)︀2
𝑑𝑡 ≤ 𝑐1‖𝑢− 𝑣‖2.

Introduce pseudometric

√
𝜌(𝑧1, 𝑧2) =

(︁ ∞∫︁
−∞

𝑓 2(𝜆) sin2 𝜆(𝑧1 − 𝑧2)

2
𝑑𝜆
)︁1/4

, 𝑧1, 𝑧2 ∈ R.
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Denote by 𝑁√
𝜌(𝜀) = 𝑁√

𝜌([0, 1], 𝜀), 𝜀 > 0, and 𝐻√
𝜌(𝜀) = ln𝑁√

𝜌(𝜀) metric massivness
and metric entropy of interval [0, 1] with respect to pseudometric

√
𝜌.

Let also 𝑐(𝑟) = −𝑟−2 ln(1 − 𝑟) − 𝑟−1, 𝑟 ∈ (0, 1), 𝑟* ≃ 0.898187 is the only solution of
the equation − ln(1 − 𝑟) − 𝑟 = 2 ln 2. And

𝐷(𝑟) =

(︂
𝜋𝑐(𝑟)

ln 2

)︂1/2
(︃

98‖𝑓‖2 + 16‖𝑓‖1/22

∫︁ 𝜀(
√
𝜌)

0

ln(1 + 𝑁√
𝜌(𝜀))𝑑𝜀

)︃
,

where 𝜀(
√
𝜌) = sup

𝑧1,𝑧2∈𝐻

√
𝜌(𝑧1, 𝑧2) ≤ ‖𝑓‖1/22 =

(︂ ∞∫︀
−∞

𝑓 2(𝜆)𝑑𝜆

)︂1/4

.

III.

∫︁
0+

𝐻√
𝜌(𝜀)𝑑𝜀 < ∞.

Theorem 1. Under conditions I, II, and III for any

𝑎 < 𝑎0 =
1

16𝜋𝑓0(1 + 𝑞)
· 𝑐0
𝑐1

(1 ∧ 1

2𝐵(0)
) ∧ 1

𝐷(𝑟*)

there exists a constant 𝐴 such that for 𝑇 > 𝑇0, 𝑅 > 𝑅0

P
{︁
𝑇 1/2 sup

𝑧∈[0,𝐻]

|𝐵𝑇 (𝑧, ̂︀𝜃𝑇 ) −𝐵(𝑧)| ≥ 𝑅
}︁
≤ 𝐴 exp{−𝑎𝑅}.

In the proof of Theorem 1 we use in particular results of the papers [1, 2] and mono-
graph [3].

Corollary 1. Let 𝛾 ∈ [0, 1/2), ℎ > 0 are some numbers, 𝑅 = ℎ𝑇 1/2−𝛾. Then under

conditions of Theorem 1 for 𝑇 > 𝑇0 ∨ {𝑅0/ℎ}(1/2−𝛾)−1

P
{︁

sup
𝑧∈[0,𝐻]

|𝐵𝑇 (𝑧, ̂︀𝜃𝑇 ) −𝐵(𝑧)| ≥ ℎ𝑇−𝛾
}︁
≤ 𝐴 exp

{︀
−𝑎ℎ𝑇 1/2−𝛾

}︀
.

Corollary 2. Let ℎ > 0 is some number, 𝑅 = ℎ ln𝑇 . Then under conditions of Theorem 1

for 𝑇 > 𝑇0 ∨ exp

{︂
𝑅0

ℎ

}︂
P

{︃
sup

𝑧∈[0,𝐻]

|B𝑇 (𝑧, ̂︀𝜃𝑇 ) − B(𝑧)| ≥ ℎ(ln𝑇 )𝑇−1/2

}︃
≤ 𝐴𝑇−𝑎ℎ.
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ON SOME INITIAL-BOUNDARY VALUE PROBLEMS FOR

PSEUDO-DIFFERENTIAL EQUATIONS RELATED TO

A ROTATIONALLY INVARIANT 𝛼-STABLE STOCHASTIC PROCESS

MYKHAILO OSYPCHUK, MYKOLA PORTENKO

The following pseudo-differential equation of parabolic type

𝜕𝑢

𝜕𝑡
= A𝑢 (1)

is considered, where A is a pseudo-differential operator with its symbol given by the
function (−𝑐|𝜉|𝛼)𝜉∈R𝑑 (parameters 𝑐 > 0 and 𝛼 ∈ (1, 2) are fixed). It is well-known that
the operator A is the generator of a rotationally invariant 𝛼-stable process in R𝑑 (denote it
by (𝑥(𝑡))𝑡≥0). A fundamental solution of equation (1) (i.e., transition probability density
of the process mentioned above) is given by

𝑔(𝑡, 𝑥, 𝑦) = (2𝜋)−𝑑

∫︁
R𝑑

exp {𝑖(𝜉, 𝑥− 𝑦)− 𝑐𝑡|𝜉|𝛼} 𝑑𝜉, (2)

for 𝑡 > 0, 𝑥 ∈ R𝑑, and 𝑦 ∈ R𝑑. It means that for any continuous bounded function
(𝜙(𝑥))𝑥∈R𝑑 , the function

𝑢(𝑡, 𝑥, 𝜙) = E𝑥𝜙(𝑥(𝑡)) =

∫︁
R𝑑

𝑔(𝑡, 𝑥, 𝑦)𝜙(𝑦) 𝑑𝑦, 𝑡 > 0, 𝑥 ∈ R𝑑, (3)

is a solution to equation (1) satisfying the initial condition

𝑢(0+, 𝑥, 𝜙) = 𝜙(𝑥), 𝑥 ∈ R𝑑. (4)

In the theory of partial differential equations of parabolic type the notion of a single-
layer potential is used for solving some initial-boundary value problems [1, Ch. 5]. In
our paper [2], we introduced such a notion for equation (1), namely given a smooth
closed bounded surface 𝑆 in R𝑑 and a continuous function (𝜓(𝑡, 𝑥))𝑡>0,𝑥∈𝑆 satisfying the
inequality |𝜓(𝑡, 𝑥)| ≤ 𝐶𝑡−𝛽 for all 𝑡 > 0 and 𝑥 ∈ 𝑆 with some constants 𝐶 > 0 and 𝛽 < 1,
we defined the function

𝑈(𝑡, 𝑥) =

∫︁ 𝑡

0

𝑑𝜏

∫︁
𝑆

𝑔(𝑡− 𝜏, 𝑥, 𝑦)𝜓(𝜏, 𝑦) 𝑑𝜎𝑦, 𝑡 > 0, 𝑥 ∈ R𝑑, (5)

where the inner integral was a surface one. This function is called a single-layer potential
associated with equation (1). As was proved in [2], it is continuous in (𝑡, 𝑥) ∈ (0,+∞)×R𝑑,
satisfies equation (1) in the region (𝑡, 𝑥) ∈ (0,+∞)×

(︀
R𝑑 ∖ 𝑆

)︀
and possesses the following

property (an analogy to the well-known theorem on the jump of the (co-)normal derivative
of a single-layer potential in the theory of differential equations)

B𝜈(𝑥)𝑈(𝑡, ·)(𝑥±) = ∓𝜓(𝑡, 𝑥) +
∫︁ 𝑡

0

𝑑𝜏

∫︁
𝑆

B𝜈(𝑥)𝑔(𝑡− 𝜏, ·, 𝑦)(𝑥)𝜓(𝜏, 𝑦) 𝑑𝜎𝑦 (6)

valid for 𝑡 > 0 and 𝑥 ∈ 𝑆, where 𝜈(𝑥) is a unit outer normal vector to 𝑆 at 𝑥 ∈ 𝑆,
B𝜈(𝑥) is a pseudo-differential operator whose symbol is given by (2𝑐𝑖|𝜉|𝛼−2(𝜉, 𝜈(𝑥)))𝜉∈R𝑑 ,
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and 𝑓(𝑥+) (resp., 𝑓(𝑥−)) for 𝑥 ∈ 𝑆 means the limit value of 𝑓(𝑧), as 𝑧 approaches 𝑥 in
a non-tangent way such that (𝑧, 𝜈(𝑥)) > 0 (resp., (𝑧, 𝜈(𝑥)) < 0). The integral in (6) is the
so-called direct value of the action of B𝜈(𝑥) on 𝑈(𝑡, 𝑥).

The main result of our report consists in constructing a fundamental solution to the
following problem (see [3]).

Let a pair of continuous functions (𝑞(𝑥))𝑥∈𝑆 and (𝑟(𝑥))𝑥∈𝑆 (the second one with posi-
tive values) be given. For a fixed continuous bounded function (𝜙(𝑥))𝑥∈R𝑑 , a continuous
function (𝑊 (𝑡, 𝑥))𝑡>0,𝑥∈R𝑑 is being looked for such that it satisfies:

- equation (1) in the region (𝑡, 𝑥) ∈ (0,+∞)×
(︀
R𝑑 ∖ 𝑆

)︀
;

- initial condition (4) for all 𝑥 ∈ R𝑑;
- the following boundary condition (𝑡 > 0, 𝑥 ∈ 𝑆)

1 + 𝑞(𝑥)

2
B𝜈(𝑥)𝑊 (𝑡, ·)(𝑥+)− 1− 𝑞(𝑥)

2
B𝜈(𝑥)𝑊 (𝑡, ·)(𝑥−) = 𝑟(𝑥)𝑊 (𝑡, 𝑥).

In the case of 𝑞(𝑥) ≡ 0 the solution of this problem can be written as follows

𝑊 (𝑡, 𝑥) = E𝑥𝜙(𝑥(𝑡))𝑒
−𝜂𝑡 , 𝑡 > 0, 𝑥 ∈ R𝑑, (7)

where 𝜂𝑡 is a W-functional of (𝑥(𝑡))𝑡≥0 defined by its characteristic

E𝑥𝜂𝑡 =

∫︁ 𝑡

0

𝑑𝜏

∫︁
𝑆

𝑔(𝜏, 𝑥, 𝑦)𝑟(𝑦) 𝑑𝜎𝑦, 𝑡 > 0, 𝑥 ∈ R𝑑.

If the function 𝑞 does not vanish identically, then the solution of this problem is asso-
ciated with some pseudo-process in a way analogous to (7).
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SIMULATION OF FRACTIONAL BROWNIAN MOTION WITH GIVEN

RELIABILITY AND ACCURACY IN THE SPACE 𝐶([0, 𝑇 ])

ANATOLII PASHKO, OLGA VASYLYK

We suggest a model and derive conditions for simulation of a fractional Brownian motion
with parameter 𝛼 ∈ (0, 2) with given reliability 1 − 𝛿, 0 < 𝛿 < 1, and accuracy 𝜀 > 0 in
the space 𝐶([0, 𝑇 ]).

Let (Ω,Σ, 𝑃 ) be a standard probability space and 𝑇 be a parametric space (𝑇 = [0, 𝑇 ]
or 𝑇 = [0,∞]). A random process {𝑊𝛼(𝑡), 𝑡 ∈ 𝑇} is called fractional Brownian motion
with parameter 𝛼 ∈ (0, 2), if it is a Gaussian process with zero mean 𝐸𝑊𝛼(𝑡) = 0 and
correlation function

𝑅(𝑡, 𝑠) =
1

2

(︀
|𝑡|𝛼 + |𝑠|𝛼 − |𝑡− 𝑠|𝛼

)︀
,

such that 𝑊𝛼(0) = 0.
A fractional Brownian motion can be represented in the form of a random series [1]. In

paper [3], there was constructed a model of a fractional Brownian motion based on such
series representation. In [2] we continue our study, presenting a method for simulation of
fractional Brownian motion basing on its spectral representation.

In particular, a fractional Brownian motion with parameter 𝛼 ∈ (0, 2) can be repre-
sented in the form of the following stochastic integral [4]:

𝑊𝛼(𝑡) =
𝐴√
𝜋

(︂∫︁ ∞

0

cos(𝜆𝑡) − 1

𝜆
𝛼+1
2

𝑑𝜉(𝜆) −
∫︁ ∞

0

sin(𝜆𝑡)

𝜆
𝛼+1
2

𝑑𝜂(𝜆)

)︂
, 𝑡 ∈ [0, 𝑇 ],

where 𝜉(𝜆), 𝜂(𝜆) are independent real valued standard Wiener processes with

𝐸𝜉(𝜆) = 𝐸𝜂(𝜆) = 0, 𝐸
(︀
𝑑𝜉(𝜆)

)︀2
= 𝐸

(︀
𝑑𝜂(𝜆)

)︀2
= 𝑑𝜆,

𝐴2 =

{︂
2

𝜋

∫︁ ∞

0

1 − cos(𝜆)

𝜆𝛼+1
𝑑𝜆

}︂−1

=

{︂
− 2

𝜋
Γ(−𝛼) cos

(︂
𝛼𝜋

2

)︂}︂−1

.

Let us take an interval [0,Λ], Λ > 0, and represent the process 𝑊𝛼 = {𝑊𝛼(𝑡), 𝑡 ∈ [0, 𝑇 ]}
in the form

𝑊𝛼(𝑡) = 𝑊𝛼(𝑡, [0, 𝜖]) + 𝑊𝛼(𝑡, [𝜖,Λ]) + 𝑊𝛼(𝑡, [Λ,∞]),

where 0 < 𝜖 < Λ and

𝑊𝛼(𝑡, [𝑎, 𝑏]) =
𝐴√
𝜋

(︂∫︁ 𝑏

𝑎

cos(𝜆𝑡) − 1

𝜆
𝛼+1
2

𝑑𝜉(𝜆) −
∫︁ 𝑏

𝑎

sin(𝜆𝑡)

𝜆
𝛼+1
2

𝑑𝜂(𝜆)

)︂
.

Let 0 = 𝜆0 < 𝜆1 < ... < 𝜆𝑀 = Λ be a partition of the interval [0,Λ], such that 𝜆1 = 𝜖.
We construct a model of the process 𝑊𝛼 in the following way:

𝑆𝑀(𝑡,Λ) =
𝐴√
𝜋

(︂𝑀−1∑︁
𝑖=1

cos(𝜆𝑖𝑡) − 1

𝜆
𝛼+1
2

𝑖

(𝜉(𝜆𝑖+1) − 𝜉(𝜆𝑖))−
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−
𝑀−1∑︁
𝑖=1

sin(𝜆𝑖𝑡)

𝜆
𝛼+1
2

𝑖

(𝜂(𝜆𝑖+1) − 𝜂(𝜆𝑖))

)︂
=

=
𝐴√
𝜋

(︂𝑀−1∑︁
𝑖=1

cos(𝜆𝑖𝑡) − 1

𝜆
𝛼+1
2

𝑖

𝑋𝑖 −
𝑀−1∑︁
𝑖=1

sin(𝜆𝑖𝑡)

𝜆
𝛼+1
2

𝑖

𝑌𝑖

)︂
, 𝑡 ∈ [0, 𝑇 ],

where {𝑋𝑖, 𝑌𝑖}, 𝑖 = 1, 2, . . . ,𝑀 − 1, are independent Gaussian random variables with
𝐸𝑋𝑖 = 𝐸𝑌𝑖 = 0, 𝐸𝑋2

𝑖 = 𝐸𝑌 2
𝑖 = 𝜆𝑖+1 − 𝜆𝑖.

Theorem 1. The model 𝑆𝑀(𝑡,Λ) approximates the process 𝑊𝛼 with a given reliability

1 − 𝛿, 0 < 𝛿 < 1, and accuracy 𝜀 > 0 in the space 𝐶([0, 𝑇 ]) if

𝛾0 < 𝜀,
𝛽𝛾0
𝐾

≤ 𝜀𝑇 𝜈

2𝜈(exp{1/2} − 1)𝜈
,

2 exp

{︂
−(𝜀− 𝛾0)

2

2𝛾2
0

}︂(︃
(𝜀− 𝛾0)𝑇

𝑏

2𝑏𝛾0(1 − 𝑏/𝜈)

(︂
𝜀𝐾

𝛽𝛾0

)︂ 𝑏
𝜈

+ 1

)︃ 2
𝑏

< 𝛿,

where numbers 𝑏 and 𝜈 are such that 0 < 𝑏 < 𝜈 < 𝛼
2
, 𝛽 = min{𝛾0, 𝐾

2𝜈
},

𝛾0 =
𝐴√
𝜋

(︂
𝑇 2𝜆2−𝛼

1

2 − 𝛼
+

2

𝛼Λ𝛼
+

4𝑇 2

3

(︃
1 +

(︂
𝛼 + 1

2

)︂2
)︃

𝑀−1∑︁
𝑖=1

(𝜆𝑖+1 − 𝜆𝑖)
3

𝜆𝛼+1
𝑖

)︂1/2

,

𝐾 =
𝐴
√

3√
𝜋

[︂
𝑇 2−2𝜈𝜆2−𝛼

1

2 − 𝛼
+

22−2𝜈

(𝛼− 2𝜈)Λ𝛼−2𝜈
+

+ 24−2𝜇𝑇 2(𝜇−𝜈)

(︃
4

2𝜇− 𝛼

𝑀−1∑︁
𝑖=1

(𝜆𝑖+1 − 𝜆𝑖)
2𝜇−𝛼+

+

(︂
𝛼 + 1

2

)︂2 𝑀−1∑︁
𝑖=1

(𝜆𝑖+1 − 𝜆𝑖)
3

3𝜆
3−(2𝜇−𝛼)
𝑖

)︃]︃ 1
2

, 𝜇 ∈
(︂
𝛼

2
;
𝛼 + 1

2

)︂
∩ (0; 1].
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LIMIT THEOREMS OF SZEGÖ’S TYPE FOR ERGODIC OPERATORS

LEONID PASTUR

We consider an asymptotic setting for ergodic operators in 𝑙2(Z) generalizing that for
the Szegö theorem on the asymptotics of determinants of finite-dimensional restrictions
of the Toeplitz and discrete convolution operators [5]. The setting is motivated by certain
problems of quantum information theory (see. e.g. [1]) and, we believe, is of independent
interest. It is formulated via the asymptotic trace formula determined by a triple con-
sisting of an ergodic operator 𝐻 and two functions, the symbol 𝑎 and the test function

𝜙. In the frameworks of this setting we analyze two important cases in which 𝐻 is the
discrete Schrodinger operator with random i.i.d. potential and the same operator with
quasiperiodic potential. In the random case we find that for smooth symbols and test
functions the corresponding asymptotic formula contains a new subleading term, which
is random and proportional to the square root of the length of the interval of restriction.
The origin of the term is the Gaussian fluctuations of the corresponding trace, i.e, in fact,
a certain Central Limit Theorem in the spectral context. We also present an example of
a discontinuous symbol for which the subleading term is bounded, being the sum of two
ergodic processes bounded with probability 1, while for the Toeplitz discrete convolution
operators and the same symbol the subleading term grows logarithmically in the length
of the interval of restriction. In the quasiperiodic case and for smooth symbols the sub-
leading term is bounded as in the Szegö theorem but unlike the theorem, where the term
does not depend on the length of the interval of restriction, in the quasiperiodic case the
term is the sum of two quasiperiodic functions in the length.

The talk is based on the works [2, 3, 4].
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REGULARLY LOG-PERIODIC FUNCTIONS

VOLODYMYR PAVLENKOV

Regularly log-periodic function (RLP) is a function 𝑓 of the form

𝑓(𝑥) = 𝑥𝜌ℓ(𝑥)𝐻(ln𝑥), 𝑥 ≥ 𝐴,

where 𝐴 > 0, 𝜌 ∈ R, 𝐻 is a positive continuous periodic function and ℓ is a slowly varying
function, i.e. ℓ is measurable and for all 𝜆 > 0

lim
𝑥→∞

𝑓(𝜆𝑥)

𝑓(𝑥)
= 1.

These functions naturally generalize Karamata regularly varying (RV) functions.
The notion “regularly log-periodic” appears in [2], but such functions arise in different

problems of probability theory and mathematical analysis. Some problems where RLP
functions emerge and can be of practical use will be considered in this talk.

Besides, the generalization of Karamata theorem on the asymptotic behavior of integrals
from RV function on the class RLP will be presented. This result is an integral criterion
for a function to belong to the class RLP.
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[5] Jelenković P.R., Olvera-Cravioto M. Implicit renewal theorem for trees with general weights // Stoch.

Proc. Appl. — 2012. — V. 122, No 9. — P. 3209-3238.
[6] Iksanov A. Renewal Theory for Perturbed Random Walks and Similar Processes. – Probability and

Its Applications. Springer, 2016.
[7] Kevei P. Regularly log-periodic functions and some applications, arXiv:1709.01996 [math.PR] — 2017.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,

Kyiv, Ukraine

Email address: pavlenkov@matan.kpi.ua

74 «Stochastic Equations, Limit Theorems and Statistics of Stochastic Processes»



ON PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS

WITH NON-LIPSHITZ COEFFICIENTS BY A SMALL-NOISE

ANDREY PILIPENKO, FRANK NORBERT PROSKE

We study the limit behavior of the sequence

𝑌 𝜀(𝑡) =

∫︁ 𝑡

0

𝑎(𝑌 𝜀(𝑠))𝑑𝑠+ 𝜀𝐵𝛼(𝑡), 𝑡 ≥ 0, (1)

as 𝜀 → 0, where 𝐵𝛼 is an 𝛼-stable process, 𝛼 ∈ (1, 2], and 𝑎(𝑦) ∼ 𝑐±sgn(𝑦)|𝑦|𝛽 as 𝑦 → 0±,
𝛽 < 1, 𝑐± > 0.
Note that the formal limit equation

𝑌 0(𝑡) =

∫︁ 𝑡

0

𝑎(𝑌 0(𝑠))𝑑𝑠 (2)

has a non-unique solution. So the limit in (1) can be considered as a natural selection of
a solution in (2).
It appears that the limit of {𝑌 𝜀} as 𝜀 → 0 is closely related with a long time behavior

of a solution to

𝑌 (𝑡) =

∫︁ 𝑡

0

(𝑐+1𝑌 (𝑠)>0 − 𝑐−1𝑌 (𝑠)<0)|𝑌 (𝑠)|𝛽𝑑𝑠+𝐵𝛼(𝑡), 𝑡 ≥ 0,

as 𝑡 → ∞.
The asymptotic behavior of stochastic differential equations growth was considered in

[1] when the noise is Wiener, see also [2, 3].
We also consider a multidimensional generalization of (1), where the vector field 𝑎 :

R𝑑 → R𝑑 is locally Lipschitz everywhere except of a hyperplane R𝑑−1 × {0}. The cor-
responding limit depends on the normal component of the drift at the upper and lower
half-spaces in a neighborhood of the hyperplane.
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GENERALIZED DERIVATIVE SAMPLING SERIES

TIBOR K. POGÁNY

Master generalized sampling series expansion is presented for entire functions (signals)
coming from a class which members satisfy an extended exponential boundedness condi-
tion. Firstly, estimates are given for the remainder of Maclaurin series of those functions
and consequent derivative sampling results are derived and discussed. These results are
employed in evaluating the related remainder term of signals which occur in sampling
series expansion of stochastic processes and random fields (not necessarily stationary or
homogeneous) which spectral kernel satisfy the relaxed exponential boundedness. The
derived truncation error upper bounds enable to obtain mean-square master generalized
derivative sampling series expansion formulae either for harmonizable Piranashvili-type
stochastic processes or for random fields. Finally, being the sampling series convergence
rate exponential, almost sure P sampling series convergence rate is established.
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RISK ESTIMATION OF A CARRINGTON-LIKE GEOMAGNETIC

STORM

PERE PUIG, DAVID MORIÑA, ISABEL SERRA, ÁLVARO CORRAL

A geomagnetic storm is a disturbance in the magnetosphere quantified by changes in the
Dst (disturbance-storm time) index. This index measures the globally averaged change of
the horizontal component of the Earth’s magnetic field at the magnetic equator and it is
recorded once per hour. During quiescent times, the Dst index varies between -20 and +20
nT (nanotesla). The Carrington event is the largest known example of geomagnetic storm,
occurred by the end of August and early September 1859 and associated to a minimum Dst
under -850 nT. Richard C. Carrington was observing sunspots on the solar disk and saw
a large solar flare with optical brightness lasting several minutes and equaling that of the
background sun, due to the destabilization of a large region of the sun causing an extremely
fast coronal mass ejection towards Earth. Nowadays, a Carrington-like geomagnetic storm
would be catastrophic for electrical systems and communications. The Dst index has been
traditionally modelled by means of its physical properties [1, 2], although some work has
also focused on exploring its statistical properties [3]. As far as we know, all efforts
in statistical modelling have been based on the assumption that the occurrence of a
geomagnetic storm follows an homogeneous Poisson counting process (see for instance
[1]).
To analyse the process of temporal occurrence of geomagnetic storms we use the Dst

index, recorded hourly from 1957-01-01 to 2017-12-31 and available from the World Data
Center for Geomagnetism in Kyoto. When the Dst signal crosses a fixed negative threshold
from above this defines the occurrence time or starting time of a geomagnetic storm with
an intensity limited by the threshold. The time between two consecutive storms below
the threshold is just the difference of their occurrence times. We have found that the
distributions of inter-occurrence times seem to be well fitted by Weibull distributions. In
terms of the complementary cumulative distribution function, the Weibull distribution
takes the form 𝑆(𝑡) = 𝑃 (𝑋 > 𝑡) = 𝑒(−𝑡/𝜏)𝛾 , where X is the random variable representing
inter-occurrence times and 𝛾, 𝜏 are respectively the parameters of shape and scale.
It is found that the scale parameter of the inter-occurrence times distribution grows ex-

ponentially with the absolute value of the intensity threshold defining the storm, whereas
the shape parameter keeps rather constant (see Figure 1).
Therefore, the inter-occurrence times were fitted using a Weibull regression model where

the scale parameter changes with the threshold of the storm, 𝑇 , according to log(𝜏) =
𝛽0 + 𝛽1𝑇 and the shape parameter 𝛾 is constant. The estimates are log(𝛾) = −0.39 (SE
= 0.023), 𝛽0 = 2.96 (SE = 0.17) and 𝛽1 = −0.0121 (SE = 0.0008).
Knowing that the original Carrington event happened in 1859, about 58000 days ago,

one can compute the probability of having a Carrington or more intense event during the
next decade (2018-2027) conditioned to the fact that no event like this has happened since
1859,

𝑃 (𝑋 ≤ 𝑡𝐶+𝑡𝑑 | 𝑋 ≥ 𝑡𝐶) =
𝑆(𝑡𝐶)− 𝑆(𝑡𝐶 + 𝑡𝑑)

𝑆(𝑡𝐶)
= 1−exp

[︂(︂
𝑡𝐶
𝜏

)︂𝛾

−
(︂
𝑡𝐶 + 𝑡𝑑

𝜏

)︂𝛾]︂
= 0.0092,
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Figure 1. Relationship between Dst threshold (in nT) and Weibull shape
(a.) and scale (b.) parameters, in log-scale, with scale parameter in days.
Intensity thresholds range from -400 nT to -150 nT. The points correspond
to maximum-likelihood estimates of the shape and scale parameters for fixed
threshold values.

with 𝑡𝐶 = 58000 days and 𝑡𝑑 = 3652 days (10 years). According to this model, the
estimated probability is 0.92%, with a 95% confidence interval equal to [0.46%, 1.88%] .
The value reported in [1] was about 12%, in sharp contrast with our result.
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CONSTRUCTIVE STOCHASTIC INTEGRAL REPRESENTATION OF

WIENER FUNCTIONAL

OMAR PURTUKHIA

In the theory of stochastic processes, the representation of functionals of Wiener process
by stochastic integrals, also known as martingale representation theorem, asserts that a
functional that is measurable with respect to the filtration generated by Wiener process
can be written in terms of the Ito stochastic integral with respect to this Wiener process.
The theorem only asserts the existence of the representation and does not help to find
it explicitly. In some cases it is possible to define the form of a representation using the
Malliavin calculus if the functional is Malliavin differentiable. Sufficiently well-behaved
Frechet-differentiable functionals have an explicit representation as a stochastic integral
in which the integrand has the form of conditional expectations of the differential. We
consider non-smooth (in the sense of Malliavin) functionals and suggest some methods
for obtaining constructive martingale representation theorems. The obtained results can
be used to establish the existence of a hedging strategy in various European options with
appropriate payoff functions.
The first proof of the martingale representation theorem was implicitly provided by

Ito (1951) himself. Many years later, Dellacherie (1974) gave a simple new proof of Ito’s
theorem using Hilbert space techniques. One of the pioneer work on explicit descriptions
of the integrand is certainly the one by Clark (1971), according to which if 𝐹 is a square
integrable ℑ𝑊

𝑇 -measurable random variable, then there exist a square integrable ℑ𝑊
𝑡 -

adapted random process 𝜙(𝑡, 𝜔) such that

𝐹 = 𝐸𝐹 +

∫︁ 𝑇

0

𝜙(𝑡, 𝜔)𝑑𝑊𝑡(𝜔).

In general, the finding of explicit expression for integrand 𝜙(𝑡, 𝜔) of stochastic integral is
very difficult problem. According to Ocone (1984) 𝜙(𝑡, 𝜔) = 𝐸[𝐷𝑡𝐹 |ℑ𝑊

𝑡 ] (so called Clark-
Ocone formula), where 𝐷𝑡 is the so called Malliavin stochastic derivative. A different
method for finding the process 𝜙(𝑡, 𝜔) was proposed by Shiryaev, Yor and Graversen
(2003, 2006), which was based on the Ito (generalized) formula and the Levy theorem for
the Levy martingale𝑀𝑡 = 𝐸[𝐹 |ℑ𝑊

𝑡 ] connected with the considered functional 𝐹. Later on,
using the Clark-Ocone formula, Renaud and Remillard (2006) have established explicit
martingale representations for path-dependent Wiener functionals.
In all cases described above investigated functionals, were stochastically (in Malliavin

sense) smooth. We study the problem of stochastic integral representation of stochas-
tically nonsmooth functional. In [1], we also considered the stochastically nonsmooth
path-dependent Wiener functional.
Theorem 1. [Glonti, Purtukhia, 2014] For the functional 𝐹 = (𝑊𝑇 − 𝐶1)

+𝐼{𝑊 *
𝑇≤𝐶2}

(𝐶2 ≥ 𝐶1 > 0, 𝑊 *
𝑇 = sup𝑡∈[0,𝑇 ] 𝑊𝑡) the following stochastic integral representation is
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fulfilled

𝐹 = 𝐸𝐹 −
𝑇∫︁

0

2(𝐶2 − 𝐶1)√
𝑇 − 𝑠

𝜙(
𝐶2 −𝑊𝑡√

𝑇 − 𝑡
)𝑑𝑊𝑡+

+

𝑇∫︁
0

{Φ(
𝑊𝑡 − 𝐶1√

𝑇 − 𝑡
) − Φ(

𝑊𝑡 − 2(𝐶2 − 𝐶1)√
𝑇 − 𝑡

)}𝑑𝑊𝑡.

It turned out that the requirement of smoothness of the functional can be weakened
(see, [2]). In particular, we generalized the Clark-Ocone formula in case, when functional
is not stochastically smooth, but its conditional mathematical expectation is stochastically
differentiable and established the method for finding of the integrand.
Theorem 2. [Glonti, Purtukhia, 2017] Suppose that 𝑔𝑡 = 𝐸[𝐹 |ℑ𝑊

𝑡 ] is Malliavin dif-
ferentiable (𝑔𝑡(·) ∈ 𝐷𝑊

2,1) for almost all 𝑡 ∈ [0, 𝑇 ). Then we have the stochastic integral
representation

𝑔𝑇 = 𝐹 = 𝐸𝐹 +

∫︁ 𝑇

0

𝜈𝑢𝑑𝑊𝑢 (𝑃 − 𝑎.𝑠.),

where
𝜈𝑢 := lim

𝑡↑𝑇
𝐸[𝐷𝑢𝑔𝑡|ℑ𝑊

𝑢 ] 𝑖𝑛 𝑡ℎ𝑒 𝐿2([0, 𝑇 ] × Ω).

It is clear that there are also such functionals which don’t satisfy even the weakened
conditions, i.e. the nonsmooth functionals whose conditional mathematical expectations
is not stochastically differentiable too (see, for example,[3]). We will consider the typical
representative of such functionals, in particular, the Wiener functional of integral type

𝐹 =
∫︀ 𝑇

0
𝑓(𝑊𝑡)𝑑𝑡. We denote by 𝑉 (𝑡, 𝑥) := 𝐸[

∫︀ 𝑇

𝑡
𝑓(𝑊𝑠)𝑑𝑠|𝐵𝑡 = 𝑥].

Theorem 3. If the deterministic function 𝑉 (𝑡, 𝑥) satisfies the requirements of the
generalized Ito theorem, then the following stochastic integral representation is fulfilled∫︁ 𝑇

0

𝑓(𝑊𝑡)𝑑𝑡 = 𝐸[

∫︁ 𝑇

0

𝑓(𝑊𝑡)𝑑𝑡] +

∫︁ 𝑇

0

𝜕/𝜕𝑥𝑉 (𝑡,𝑊𝑡)𝑑𝑊𝑡.
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THE ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF EQUATIONS

DRIVEN BY GENERAL STOCHASTIC MEASURES

VADYM RADCHENKO

Let L0 = L0(Ω,ℱ ,P) be the set of all real-valued random variables defined on the
complete probability space (Ω,ℱ ,P) (more precisely, the set of equivalence classes). Con-
vergence in L0 means the convergence in probability. Let X be an arbitrary set and ℬ a
𝜎-algebra of subsets of X.

Definition 1. A 𝜎-additive mapping 𝜇 : ℬ → L0 is called stochastic measure (SM).

Assumption A1. 𝜇 is a SM on Borel subsets of [0, 𝑇 ], and the process 𝜇𝑡 = 𝜇((0, 𝑡])
has continuous paths on [0, 𝑇 ].
Assumption A2. There exists a real-valued finite measure m on (X,ℬ) with the

following property: if a measurable function ℎ : X → R is such that
∫︀
X
ℎ2 dm < +∞ then

ℎ is integrable with respect to 𝜇 on X.
We do not assume the moment existence or martingale properties for SM.
The following symmetric integral of random functions with respect to stochastic mea-

sures was considered in [1].

Definition 2. Let 𝜉𝑡 and 𝜂𝑡 be random processes on [0, 𝑇 ], 0 = 𝑡𝑛0 < 𝑡𝑛1 < · · · < 𝑡𝑛𝑗𝑛 = 𝑇
be a sequence of partitions such that max𝑘 |𝑡𝑛𝑘 − 𝑡𝑛𝑘−1| → 0, 𝑛→ ∞. We define∫︁

(0,𝑇 ]

𝜉𝑡 ∘ d𝜂𝑡 := p lim
𝑛→∞

𝑗𝑛∑︁
𝑘=1

𝜉𝑡𝑛𝑘−1
+ 𝜉𝑡𝑛𝑘
2

(𝜂𝑡𝑛𝑘 − 𝜂𝑡𝑛𝑘−1
) (1)

provided that this limit in probability exists.

Assumption A3. 𝑉𝑡 is a continuous process of bounded variation on [0, 𝑇 ].

Theorem 1 ([1]). Let A1 and A3 hold, 𝑓 ∈ C1,1(R2). Then integral (1) of 𝑓(𝜇𝑡, 𝑉𝑡) with
respect to 𝜇𝑡 is well defined, and∫︁

(0,𝑇 ]

𝑓(𝜇𝑡, 𝑉𝑡) ∘ d𝜇𝑡 = 𝐺(𝜇𝑡, 𝑉𝑡) −𝐺(𝜇0, 𝑉0) −
∫︁
(0,𝑇 ]

𝐺′
2(𝜇𝑡, 𝑉𝑡) d𝑉𝑡,

where 𝐺(𝑥, 𝑣) =
∫︀ 𝑥

0
𝑓(𝑦, 𝑣) d𝑦.

We will consider a stochastic equation of the form

∘ d𝑋𝑡 = 𝜎(𝑋𝑡) ∘ d𝜇𝑡 + 𝑏(𝑋𝑡, 𝑡) d𝑡, 0 ≤ 𝑡 ≤ 𝑇. (2)

Definition 3. A process 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 is a solution to (2) if:
1) 𝑋𝑡 = 𝑓(𝜇𝑡, 𝑌𝑡), 𝑓 ∈ C2,1(R2), 𝑌𝑡 is a continuous process of bounded variation;
2) for any process 𝑍𝑠 = 𝜓(𝜇𝑠, 𝑋𝑠), 𝜓 ∈ C1,1(R2), we have∫︁

(0,𝑡]

𝑍𝑠 ∘ d𝑋𝑠 =

∫︁
(0,𝑡]

𝑍𝑠𝜎(𝑋𝑠) ∘ d𝜇𝑠 +

∫︁
(0,𝑡]

𝑍𝑠𝑏(𝑋𝑠, 𝑠) d𝑠, 𝑡 ∈ [0, 𝑇 ].
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Assumption A4. 1) 𝜎 ∈ C2(R) and the derivatives 𝜎′, 𝜎′′ are bounded;
2) 𝑏 ∈ C(R2);
3) for each 𝑐 > 0 there exists a 𝐿(𝑐) such that

|𝑏(𝑥, 𝑡) − 𝑏(𝑦, 𝑡)| ≤ 𝐿(𝑐)|𝑥− 𝑦|, |𝑥|, |𝑦| ≤ 𝑐;

4) 𝑏 is bounded.
Let 𝐹 : R2 → R be the solution of the equation

𝜕𝐹

𝜕𝑟
(𝑟, 𝑥) = 𝜎(𝐹 (𝑟, 𝑥)), 𝐹 (0, 𝑥) = 𝑥,

which exists globally because of our assumptions. Set 𝐻(𝑟, 𝑥) = 𝐹−1(𝑟, 𝑥), where the
inverse is taken with respect to 𝑥.

Theorem 2 ([1]). Let A2 and A4 hold, 𝑋0 be an arbitrary random variable. Then equa-
tion (2) has a unique solution 𝑋𝑡 = 𝐹 (𝜇𝑡, 𝑌𝑡), where 𝑌𝑡 is the solution of the random
equation

𝑌𝑡 = 𝐻(0, 𝑋0) +

∫︁ 𝑡

0

𝜕𝐻

𝜕𝑥
(𝜇𝑠, 𝐹 (𝜇𝑠, 𝑌𝑠))𝑏(𝐹 (𝜇𝑠, 𝑌𝑠), 𝑠) d𝑠.

We will consider the averaging principle for this equations. For each 𝜀 > 0 consider the
equation

∘ d𝑋𝜀
𝑡 = 𝜎(𝑋𝜀

𝑡 ) ∘ d𝜇𝑡 + 𝑏(𝑋𝜀
𝑡 , 𝑡/𝜀) d𝑡, 0 ≤ 𝑡 ≤ 𝑇. (3)

and its averaged form

∘ d�̄�𝑡 = 𝜎(�̄�𝑡) ∘ d𝜇𝑡 + �̄�(�̄�𝑡) d𝑡, 0 ≤ 𝑡 ≤ 𝑇. (4)

Assumption A5. Function 𝐺(𝑦, 𝑟) =
∫︀ 𝑟

0
(𝑏(𝑦, 𝑠)− �̄�(𝑦)) d𝑠, 𝑟 ∈ R+, 𝑦 ∈ R is bounded.

Theorem 3. 1) Assume that A1, A4, and A5 hold, 𝑋𝜀
𝑡 and �̄�𝑡 are the solutions of (3)

and (4) respectively. Then for each 𝜔 ∈ Ω

sup
𝑡∈[0,𝑇 ]

|𝑋𝜀
𝑡 − �̄�𝑡| → 0, 𝜀→ 0.

2) Let, in addition, A2 holds. Then the set of the random variables

sup𝑡∈[0,𝑇 ] |𝑋𝜀
𝑡 − �̄�𝑡|

𝜀1/3
, 𝜀 > 0

is bounded in probability.
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BROWNIAN TRADING EXCURSIONS

THORSTEN RHEINLANDER

We study a parsimonious but non-trivial model of the latent limit order book where
orders get placed with a fixed displacement from an efficient price process, i.e.some process
in-between best bid and best ask, and get executed whenever this efficient price reaches
their level. This mechanism corresponds to the fundamental solution of the stochastic
heat equation with multiplicative noise for the relative order volume distribution. We
classify various types of trades, and introduce the trading excursion process which is a
Poisson point process. This allows to derive the Laplace transforms of the times to various
trading events under the corresponding intensity measure.
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OPTIMAL PACKING OF BROWNIAN BALLS

SYLVIE ROELLY

We consider a system of 𝑛 equal hard balls in Euclidean space, undergoing Brownian
dynamics and interacting via a mutual attraction force: for 𝑖 ∈ {1, · · · , 𝑛}, denoting by
𝑋𝑖(𝑡) the position of the center of the 𝑖th ball at time 𝑡,

𝑑𝑋𝑖(𝑡) = 𝑑𝐵𝑖(𝑡)− 𝑎
𝑛∑︁

𝑗=1

(𝑋𝑖(𝑡)−𝑋𝑗(𝑡))𝑑𝑡+
𝑛∑︁

𝑗=1

(𝑋𝑖(𝑡)−𝑋𝑗(𝑡)) 𝑑𝐿𝑖𝑗(𝑡)

where the random processes 𝐿𝑖𝑗 are called collision local times.

We prove that such Langevin stochastic evolution converges asymptotically in time to-
wards an equilibrium state. When the attraction parameter 𝑎 is large, this stationary
measure is asymptotically connected with the famous geometry problem of close-packing
of equal spheres.

The case of infinitely many balls will also be discussed.

These results were obtained via collaborations with Patrick Cattiaux (Toulouse), Myriam
Fradon (Lille) and Alexei M. Kulik (Kyiv).
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GENERALIZED COUPLINGS

MICHAEL SCHEUTZOW

The coupling technique has been successfully applied to show uniqueness of an invariant
probability measure 𝜋 of a Markov processes and convergence of transition probabilities
to 𝜋. The first result in this direction was published by Wolfgang Doblin in 1940. By
definition, a coupling of two probability measures 𝜇 and 𝜈 on the same measurable space
(𝐸, ℰ) is any probability measure 𝜉 on the product space (𝐸 × 𝐸, ℰ ⊗ ℰ) with respective
marginals 𝜇 and 𝜈. In this talk we introduce generalized couplings which, by definition, are
probability measures 𝜉 on the product space for which the marginals are not necessarily
equal to but only absolutely continuous with respect to 𝜇 and 𝜈 respectively. In some
applications it is more appropriate to replace the word absolutely continuous by close to

(in an appropriate sense).
We will give several applications of this concept. In particular we will see, how one can

show uniqueness of a weak solution of a stochastic delay differential equation driven by
Brownian motion in the case where the coefficients are merely Hölder continuous and the
noise is non-degenerate. We will also show how to obtain exponential convergence rates of
the transition probabilities to the invariant probability measure assuming that a suitable
Lyapunov function exists.
This is joint work with Alexey Kulik (Kiev) and Oleg Butkovsky (Berlin and Haifa)
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PESIN’S FORMULA FOR ISOTROPIC BROWNIAN FLOWS

VITALII SENIN

Pesin’s formula is a relation between the entropy of a dynamical system and its positive
Lyapunov exponents. This formula was first established by Pesin in the late 1970s for some
deterministic dynamical systems acting on a compact Riemannian manifold. Later on the
same formula was obtained in some other settings. For example, different authors have
proved the formula for some random dynamical systems, or have relaxed the condition of
state space compactness. Nevertheless, it has never been obtained for dynamical systems
with invariant measure, which is infinite. The problem is that if invariant measure is
infinite, then the notion of entropy becomes senseless. Invariant measure of isotropic
Brownian flows is the Lebesgue measure on R𝑑, which is, clearly, infinite. Nevertheless,
we define entropy for such a kind of flows using their translation invariance. For the
definition we exploit ideas of Brin and Katok, see [1]. Then we study the analogue of
Pesin’s formula for these flows using the defined entropy.
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BRANCHING RANDOM WALKS

ZHAN SHI

Branching random walks and branching Brownian motions are branching systems where

each individual, also referred to as particle, is associated with a spatial parameter repre-

senting the fitness value of the individual. They are connected to several other important

topics in mathematics, computer science, physics and biology. I am going to give an ele-

mentary and self-contained introduction to the study of the structure of extreme positions

in branching random walks and branching Brownian motions.
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CONSISTENT TLS ESTIMATOR IN HETEROSCEDASTIC LINEAR

ERROR-IN-VARIABLES MODEL

SERGIY SHKLYAR

Consider linear regression with errors in variables. Let the true regressors be nonrandom
variables that make a vector 𝜉𝑖 ∈ R𝑝 on each observation. The true response variable is
𝜂𝑖 = 𝛽⊤𝜉𝑖. The regressors and response variables are observed with errors:{︃

𝑥𝑖 = 𝜉𝑖 + 𝛿𝑖,

𝑦𝑖 = 𝛽⊤𝜉𝑖 + 𝜖𝑖.

Assume that the augmented vectors of errors �⃗�𝑖 = (𝛿⊤𝑖 , 𝜖𝑖)
⊤ are mutually independent; they

have zero means and known covariance matrices Σ𝑖. The matrices Σ𝑖 are assumed to be
known, but may be different for different observations. The points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . ,𝑚,
are observed and the parameter 𝛽 is estimated.
Consider two estimators of the parameter 𝛽. The element-wise weighted total least

squares (EW-TLS) estimator is defined in Kukush and Van Huffel. When the matrices
Σ𝑖 are nonsingular, the EW-TLS minimizes the functional

𝑄(𝛽) =
𝑚∑︁
𝑖=1

min
𝑡∈R𝑝

(𝑥⊤
𝑖 − 𝑡⊤, 𝑦𝑖 − 𝛽⊤𝑡)Σ−1

𝑖

(︂
𝑥𝑖 − 𝑡

𝑦𝑖 − 𝛽⊤𝑡

)︂
.

For the other estimator, the matrices Σ𝑖 were preliminarily averaged over the observations.
The consistency conditions for the TLS-EW estimator are relaxed and for the TLS

estimator with averaging covariance matrix are provided.
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ESTIMATE OF LIMIT SEMI-CONTINUOUS KILLED MARKOV

DECISION PROCESS

PAVLO SHPAK, YAROSLAV YELEYKO

We consider a sequence of semi-continuous killed Markov decision processes [1]
(𝑋,𝐴, 𝑗, 𝑝, 𝑞, 𝑟, 𝑐, 𝜇) ≡ 𝑍𝜇 which satisfies the following conditions:

(1) set of states 𝑋 =
𝑛⋃︀

𝑡=𝑚

𝑋𝑡 is a separable metric space;

(2) set of all pairs 𝑥𝑥 (𝑥 ∈ 𝑋𝑡) belongs 𝜎(𝑋𝑡 ×𝑋𝑡);
(3) subset of killed states 𝑋* ⊂ 𝑋 is measurable
(4) 𝑋𝑚, 𝑋𝑚+1, . . . , 𝑋𝑛 are disjoint subsets of 𝑋;
(5) sets 𝑋𝑚∩𝑋*, 𝑋𝑚 ∖𝑋*, 𝑋𝑚+1∩𝑋*, 𝑋𝑚+1 ∖𝑋*, . . . , 𝑋𝑛∩𝑋*, 𝑋𝑛 ∖𝑋* are closed

subsets of 𝑋;

(6) set of controls 𝐴 =
𝑛⋃︀

𝑡=𝑚+1

𝐴𝑡 is a separable metric space

(7) 𝐴𝑚+1, 𝐴𝑚+2, . . . , 𝐴𝑛 are disjoint closed subsets of 𝐴;
(8) correspondence 𝐴(𝑥) is quasicontinuous (if 𝑥𝑘 → 𝑥 ∈ 𝑋 and 𝑎𝑘 ∈ 𝐴(𝑥𝑘), then

{𝑎𝑘} has a limit point belonging to 𝐴(𝑥));
(9) if 𝑓 ∈ $(𝑋𝑡) [1] and 𝑔(𝑎) =

∫︀
𝑋𝑡

𝑝(𝑑𝑥|𝑎)𝑓(𝑥) (𝑎 ∈ 𝐴𝑡), then 𝑔 ∈ $(𝐴𝑡);

(10) 𝑗 : 𝐴 → 𝑋 are correspondence to projection 𝑗(𝐴𝑡+1) = 𝑋𝑡;
(11) 𝑝(·|𝑎) ≡ P(𝑥𝑡 = 𝑥|𝑎𝑡 = 𝑎𝑥𝑡−1) are probability distributions on 𝑋𝑡;
(12) 𝑞 : 𝐴 → R is a function on the set of controls (current cost);
(13) 𝑟 : 𝑋𝑛 → R is a function on the set of final states (final cost);
(14) 𝑐 : 𝑋𝑡 ∩𝑋* → R is a function on the set of killed states:

𝑐(𝑥) ≤ −
𝑛∑︁

𝑡=𝑚+1

sup
𝑎𝑡∈𝐴𝑡

𝑞(𝑎), 𝑥 ∈ 𝑋𝑡 ∩𝑋*;

And analyze the sufficient conditions of existence of the estimate [2] of limit process.
As a result we have a following theorem:

Theorem 1. Let 𝑍𝑘 ≡ (𝑋,𝐴, 𝑗, 𝑝, 𝑞𝑘, 𝑟𝑘, 𝑐𝑘) be a sequence of semi-continuous killed

Markov decision processes, 𝑞𝑘, 𝑐𝑘, 𝑟𝑘 are bounded sequences of functions and

𝑞𝑘 −−−→
𝑘→∞

𝑞* ∈ $(𝐴𝑡)

𝑐𝑘 −−−→
𝑘→∞

𝑐* ∈ $(𝑋𝑡 ∩𝑋*)

𝑟𝑘 −−−→
𝑘→∞

𝑟* ∈ $(𝑋𝑛)

Then estimate of the limit process 𝑍* ≡ (𝑋,𝐴, 𝑗, 𝑝, 𝑞*, 𝑟*, 𝑐*) is equal to the limit of

estimates of 𝑍𝑘:
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∀𝜇 : 𝜐𝑘(𝜇) −−−→
𝑘→∞

𝜐*(𝜇)
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APPLICATIONS OF STOCHASTIC PROCESSES THEORY TO

PROBLEMS OF MATHEMATICAL PHYSICS WITH RANDOM

FACTORS

ANNA SLYVKA-TYLYSHCHAK

The paper is devoted to an example of application of estimates of the distribution
supremum at infinity for fields from space 𝑆𝑢𝑏𝜙(Ω) ( see [1]) to the solution of a hyperbolic
type equation of mathematical physics, where 𝑡 ∈ [0,+∞).

Consider the boundary-value problem of the first kind for a homogeneous hyperbolic
equation [2]. The problem is whether one can find a function 𝑢 = (𝑢 (𝑥, 𝑦) , 𝑥 ∈ [0, 𝜋] ,
𝑡 ∈ [0, 𝑡]) satisfying the following conditions:

𝜕

𝜕𝑥

(︂
𝑝(𝑥)

𝜕𝑢

𝜕𝑥

)︂
− 𝑞(𝑥)𝑢− 𝜌(𝑥)

𝜕2𝑢

𝜕𝑡2
= 0;

𝑥 ∈ [0, 𝜋] , 𝑡 ∈ [0,+∞] ;

𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0, 𝑡 ∈ [0,+∞] ;

𝑢(𝑥, 0) = 𝜉(𝑥),
𝜕𝑢(𝑥, 0)

𝜕𝑡
= 𝜂(𝑥), 𝑥 ∈ [0, 𝜋] .

Assume also that (𝜉(𝑥), 𝑥 ∈ [0, 𝜋]) and (𝜂(𝑥), 𝑥 ∈ [0, 𝜋]) are 𝑆𝑆𝑢𝑏𝜙(Ω) stochastic pro-

cesses defined on a common complete probability space (Ω, ℑ, 𝑃 ), where 𝜙(𝑥) = |𝑥|𝑝
𝑝
,

|𝑥| > 1, 𝑝 > 1.
Independently of whether the initial conditions are deterministic or random the Fourier

method consists in looking for a solution to the series

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑋𝑘(𝑥)

[︂
𝐴𝑘𝑐𝑜𝑠

√︀
𝜆𝑘𝑡 +

𝐵𝑘√
𝜆𝑘

𝑠𝑖𝑛
√︀
𝜆𝑘𝑡

]︂
,

𝑥 ∈ [0, 𝜋] , 𝑡 ∈ [0,+∞] ;

where

𝐴𝑘 =

∫︁ 𝜋

0

𝜉(𝑥)𝑋𝑘(𝑥)𝜌(𝑥)𝑑𝑥, 𝑘 ≥ 1,

𝐵𝑘 =

∫︁ 𝜋

0

𝜂(𝑥)𝑋𝑘(𝑥)𝜌(𝑥)𝑑𝑥, 𝑘 ≥ 1,

and where 𝜆𝑘, 𝑘 ≥ 1 and 𝑋𝑘 = (𝑋𝑘(𝑥), 𝑥 ∈ [0, 𝜋]), 𝑘 ≥ 1 are eigenvalues and the corre-
sponding orthonormal, with weight 𝜌(·), eigenfunctions of the following Sturm-Liouville
problem

𝑑

𝑑𝑥

(︂
𝑝(𝑥)

𝑑𝑋(𝑥)

𝑑𝑥

)︂
− 𝑞(𝑥)𝑋(𝑥) + 𝜆𝜌(𝑥)𝑋(𝑥) = 0,

𝑋(0) = 𝑋(𝜋) = 0.
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Theorem 1. Let {𝑢(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑉 } , 𝑉 = [0; 𝜋] × [0,+∞) be a separable random field

belonging to 𝑆𝑢𝑏𝜙 (Ω), where 𝜙(𝑥) = |𝑥|𝑝
𝑝

for |𝑥| > 1, 𝑝 > 1. Assume the following

conditions are satisfied.

(1) [𝑏𝑘, 𝑏𝑘+1] , 𝑘 = 0, 1, . . . is a family of such segments, that −∞ < 𝑏𝑘 < 𝑏𝑘+1 < +∞,
𝑘 = 0, 1, . . . 𝑉𝑘 = [0;𝜋] × [𝑏𝑘, 𝑏𝑘+1] ,

⋃︀
𝑘

𝑉𝑘 = 𝑉 .

(2) Let there exist constants 𝑎𝑘 > 0 and 𝑑 > 1, such that 𝜋 > 2
𝑑
,

𝑏𝑘+1−𝑏𝑘
2

> 1
𝑑
and

sup
|𝑥−𝑥1|≤ℎ,
|𝑡−𝑡1|≤ℎ

(𝑥,𝑡),(𝑥1,𝑡1)∈𝑉𝑘

𝜏𝜙 (𝑢 (𝑥, 𝑡) − 𝑢 (𝑥1, 𝑡1)) ≤
𝑎𝑘⃒⃒⃒

ln
(︁

1
|ℎ| + 𝑑

)︁⃒⃒⃒𝛼 ,
for some |ℎ| and 𝛼 > 1 − 1

𝑝
.

(3) 𝑐 = {𝑐(𝑡), 𝑡 ∈ 𝑅} is some continuous function, such that 𝑐(𝑡) > 0, 𝑡 ∈ 𝑅, 𝑐𝑘 =
min

𝑡∈[𝑡𝑘,𝑡𝑘+1]
𝑐(𝑡).

(4) sup
𝑘

1
𝑐𝑘

< ∞, sup
𝑘

ln
(︁
𝜋·

𝑏𝑘+1−𝑏𝑘
2

)︁ 1
𝑞

𝑐𝑘
< ∞.

(5) The series
∞∑︀
𝑘=0

exp

{︂
−1

𝑞

(︁
𝑠𝑐𝑘(1−𝜃)

2𝜀0

)︁ 1
𝑞

}︂
converges for some 𝑠, such that, sup

𝑘

4𝜀𝑘
𝑐𝑘(1−𝜃)

<

𝑠 < 𝑣
2
, where 𝜀0 = sup

(𝑥,𝑡)∈𝑉𝑘

(︀
𝐸 (𝑢(𝑥, 𝑡))2

)︀ 1
2 , 𝑘 = 0, 1, . . .

Then

𝑃

{︃
sup

(𝑥,𝑡)∈𝑉

|𝑢(𝑥, 𝑡)|
𝑐(𝑡)

> 𝑣

}︃
≤ 2 exp

{︂
−1

𝑞

(︁𝑣
𝑠

)︁ 1
𝑞

}︂
·

∞∑︁
𝑘=0

exp

{︃
−1

𝑞

(︂
𝑠𝑐𝑘(1 − 𝜃)

2𝜀0

)︂ 1
𝑞

}︃
.

for 𝑣 > sup
𝑘

1

𝑝
1
𝑝

(︃
2
1
𝑞 (𝑎)

1
𝛼𝑞 (𝜃𝜀0)

1− 1
𝛼𝑞

1− 1
𝛼𝑞

+𝜃𝜀0 ln
(︁
𝜋·

𝑏𝑘+1−𝑏𝑘
2

)︁ 1
𝑞

)︃
𝑐𝑘

· 4
𝜃(1−𝜃)

, 0 < 𝜃 < 1.
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CAUCHY PROBLEMS AND INVARIANT MEASURES FOR PARTIAL
STOCHASTIC FUNCTIONAL-DIFFERENTIAL EQUATIONS

A.N. STANZHYTSKYI, A.O. TSUKANOVA

We deal with the Cauchy problem for stochastic functional-differential equation

𝑑𝑢(𝑡, 𝑥) =

(︂
∆𝑥𝑢(𝑡, 𝑥) + 𝑓(𝑢𝑡(𝑥))

)︂
𝑑𝑡 + 𝜎(𝑢𝑡(𝑥))𝑑𝛽(𝑡), 0 < 𝑡 ≤ 𝑇 , 𝑥 ∈ R𝑑, (1)

𝑢(𝑡, 𝑥) = 𝜑(𝑡, 𝑥), − 𝑟 ≤ 𝑡 ≤ 0, 𝑥 ∈ R𝑑, 𝑟 > 0, (1*)

where 𝑇 > 0 is fixed, ∆𝑥 ≡
𝑑∑︀

𝑖=1

𝜕2

𝜕𝑥2
𝑖
is 𝑑-measurable Laplacian in the space variables, 𝑊 is

a 𝑄-Wiener process, 𝑓 and 𝜎 are some given functionals to be specified later, 𝜑 : [−𝑟, 0]×
×R𝑑 → R is an initial-datum function, 𝑢𝑡(𝑥) = 𝑢(𝑡+𝜃, 𝑥), 0 ≤ 𝑡 ≤ 𝑇 , 𝑥 ∈ R𝑑, −𝑟 ≤ 𝜃 ≤ 0.
Let (Ω,ℱ ,P) note a complete probability space. Henceforth 𝐿𝜌

2(R𝑑) will denote real

Hilbert space with the norm ‖𝑔‖𝐿𝜌
2(R𝑑) =

(︂∫︀
R𝑑

𝑔2(𝑥)𝜌(𝑥)𝑑𝑥

)︂ 1
2

, where 𝜌 ∈ 𝐿1(R𝑑) is a so-

called admissible weight. Let {𝑒𝑛(𝑥), 𝑛 ∈ {1, 2, . . . }} be an orthonormal basis on 𝐿2(R𝑑)
such that sup

𝑛∈{1,2,... }
𝑒𝑠𝑠 sup

𝑥∈R𝑑

|𝑒𝑛(𝑥)| ≤ 1. We now define 𝐿2(R𝑑)-valued 𝑄-Wiener process

𝑊 (𝑡, 𝑥) = 𝑊 (𝑡, · ), 𝑡 ≥ 0, 𝑥 ∈ R𝑑, as follows 𝑊 (𝑡, · ) =
∞∑︀
𝑛=1

√
𝜆𝑛𝑒𝑛(· )𝛽𝑛(𝑡), 𝑡 ≥ 0,

where {𝛽𝑛(𝑡), 𝑛 ∈ {1, 2, . . . }} ⊂ R are independent standard real-valued one-dimensional
Brownian motions on 𝑡 ≥ 0, {𝜆𝑛, 𝑛 ∈ {1, 2, . . . }} is a sequence of positive numbers such

that
∞∑︀
𝑛=1

𝜆𝑛 < ∞. Let {ℱ𝑡, 𝑡 ≥ 0} be a normal filtration on ℱ . We assume that 𝑊 (𝑡, · ),

𝑡 ≥ 0, is a 𝑄-Wiener process with respect to a filtration {ℱ𝑡, 𝑡 ≥ 0}, i.e.,
∙ 𝑊 (𝑡, · ), 𝑡 ≥ 0, is ℱ𝑡-measurable;
∙ the increments 𝑊 (𝑡+ℎ, · )−𝑊 (𝑡, · ) are independent of ℱ𝑡 for all ℎ > 0 and 𝑡 ≥ 0.

Let 𝐿2([−𝑟; 0];𝐿𝜌
2(R𝑑)) will note real Hilbert space with the norm ‖𝑔‖𝐿2([−𝑟;0];𝐿𝜌

2(R𝑑)) =

=

(︂
0∫︀

−𝑟

∫︀
R𝑑

𝑔2(𝜃, 𝑥)𝜌(𝑥)𝑑𝑥𝑑𝜃

)︂ 1
2

. For all 𝑡 ≥ 0 𝑢𝑡 is 𝐿2([−𝑟; 0];𝐿𝜌
2(R𝑑))-valued process. Let

denote by 𝐻 = 𝐿𝜌
2(R𝑑) × 𝐿2([−𝑟; 0];𝐿𝜌

2(R𝑑)) Hilbert space of vectors 𝑈(𝑡, 𝑥) =

=

(︂
𝑢(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ R𝑑,

𝑢𝑡 = 𝑢(𝑡 + 𝜃, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ R𝑑, − 𝑟 ≤ 𝜃 ≤ 0

)︂
with the norm ‖𝑈(𝑡, · )‖𝐻 =

=

(︂
‖𝑢(𝑡, · )‖2

𝐿𝜌
2(R𝑑)

+ ‖𝑢𝑡( · )‖2𝐿2([−𝑟;0];𝐿𝜌
2(R𝑑))

)︂ 1
2

.

We impose the following conditions.

(1) {𝑓, 𝜎} : 𝐿2([−𝑟; 0];𝐿𝜌
2(R𝑑)) → 𝐿𝜌

2(R𝑑).
(2) The initial-datum function 𝜑(𝑡, 𝑥, 𝜔) : [−𝑟, 0]×R𝑑×Ω → 𝐿𝜌

2(R𝑑) is ℱ0-measurable
random function, independent of 𝑊 (𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ R𝑑, with almost surely
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continuous paths and such that

E

0∫︁
−𝑟

‖𝜑(𝑡, · )‖𝑝
𝐿𝜌
2(R𝑑)

𝑑𝑡 < ∞, E‖𝜑(0, · )‖𝑝
𝐿𝜌
2(R𝑑)

< ∞, 𝑝 > 2.

(3) {𝑓, 𝜎} are such that

‖𝑓(𝑢)‖𝐿𝜌
2(R𝑑) + ‖𝜎(𝑢)‖𝐿𝜌

2(R𝑑) ≤ 𝐿
(︀
1 + ‖𝑢‖𝐿2([−𝑟;0];𝐿𝜌

2(R𝑑))

)︀
, 𝑢 ∈ 𝐿2([−𝑟; 0];𝐿𝜌

2(R𝑑)),

‖𝑓(𝑢) − 𝑓(𝑣)‖𝐿𝜌
2(R𝑑) + ‖𝜎(𝑢) − 𝜎(𝑣)‖𝐿𝜌

2(R𝑑) ≤ 𝐿‖𝑢− 𝑣‖𝐿2([−𝑟;0];𝐿𝜌
2(R𝑑)),

{𝑢, 𝑣} ⊂ 𝐿2([−𝑟; 0];𝐿𝜌
2(R𝑑)).

We introduce the following definition.

Definition 1. A continuous random process 𝑢(𝑡, 𝑥, 𝜔) : 𝐻 → R is called amild solution
(solution) to (1) – ( 1*) provided that

(1) It is ℱ𝑡-measurable for almost all −𝑟 ≤ 𝑡 ≤ 𝑇 .
(2) It satisfies the integral equation

𝑢(𝑡, 𝑥) =

∫︁
R𝑑

𝒦(𝑡, 𝑥− 𝜉)𝜑(0, 𝜉)𝑑𝜉 +

𝑡∫︁
0

∫︁
R𝑑

𝒦(𝑡− 𝑠, 𝑥− 𝜉)𝑓(𝑢𝑠)𝑑𝜉𝑑𝑠

+

𝑡∫︁
0

∞∑︁
𝑛=1

√︀
𝜆𝑛

(︂∫︁
R𝑑

𝒦(𝑡− 𝑠, 𝑥− 𝜉)𝜎(𝑢𝑠)𝑒𝑛(𝜉)𝑑𝜉

)︂
𝑑𝛽𝑛(𝑠),

0 < 𝑡 ≤ 𝑇 , 𝑥 ∈ R𝑑, (2)

𝑢(𝑡, 𝑥) = 𝜑(𝑡, 𝑥), − 𝑟 ≤ 𝑡 ≤ 0, 𝑥 ∈ R𝑑, 𝑟 > 0. (2*)

(3) It satisfies the condition E
𝑇∫︀
0

‖𝑢(𝑡, · )‖𝑝
𝐿𝜌
2(R𝑑)

𝑑𝑡 < ∞, 𝑝 > 2, where K (𝑡, 𝑥) =

=

{︃
1

(4𝜋𝑡)
𝑑
2

exp
{︀
− |𝑥|2

4𝑡

}︀
, 𝑡 > 0,

0, 𝑡 < 0,
denotes the fundamental solution (source func-

tion, diffusion kernel) of the heat equation.

Remark 1. It is assumed in the definition above that all the integrals in (2) are well
defined.

We have proved that, under assumptions above, there exists a unique solution to the
problem under investigation. We have also shown its Markovian and Feller property,
and obtained sufficient conditions of invariant measure existence in terms of coefficients
(coefficient conditions).
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FOURIER AND FOURIER-HAAR SERIES OF STOCHASTIC

MEASURES AND THEIR APPLICATIONS

NELIA STEFANS’KA

Consider a mild solution of the Cauchy problem to the wave equation

𝑢(𝑡, 𝑥) =
1

2
(𝑢0(𝑥 + 𝑎𝑡) − 𝑢0(𝑥− 𝑎𝑡)) +

1

2𝑎

∫︁ 𝑥+𝑎𝑡

𝑥−𝑎𝑡

𝑣0(𝑦) 𝑑𝑦

+
1

2𝑎

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑥+𝑎(𝑡−𝑠)

𝑥−𝑎(𝑡−𝑠)

𝑓(𝑠, 𝑦, 𝑢(𝑠, 𝑦)) 𝑑𝑦 +
1

2𝑎

∫︁
(0,𝑡]

𝑑𝜇(𝑠)

∫︁ 𝑥+𝑎(𝑡−𝑠)

𝑥−𝑎(𝑡−𝑠)

𝜎(𝑠, 𝑦),

(1)

where (𝑡, 𝑥) ∈ [0, 1] × R, 𝑎 > 0, 𝜇 is an SM defined on Borel 𝜎-algebra ℬ((0, 1]).
The integrals of random functions with respect to 𝑑𝑥 are taken for each fixed 𝜔 ∈ Ω.
We impose the following assumptions.
A1. Functions 𝑢0(𝑦) = 𝑢0(𝑦, 𝜔) : R × Ω → R and 𝑣0(𝑦) = 𝑣0(𝑦, 𝜔) : R × Ω → R are

measurable and bounded for every fixed 𝜔 ∈ Ω.
A2. The function 𝑓(𝑠, 𝑦, 𝑣) : [0, 1] × R× R → R is measurable and bounded.
A3. |𝑓(𝑠, 𝑦1, 𝑣1) − 𝑓(𝑠, 𝑦2, 𝑣2)| ≤ 𝐿𝑓 (|𝑦1 − 𝑦2| + |𝑣1 − 𝑣2|) .
A4. The function 𝜎(𝑠, 𝑦) : [0, 1] × R → R is measurable and bounded.

A5. |𝜎(𝑠1, 𝑦1) − 𝜎(𝑠2, 𝑦2)| ≤ 𝐿𝜎

(︀
|𝑠1 − 𝑠2|𝛽(𝜎) + |𝑦1 − 𝑦2|𝛽(𝜎)

)︀
, 1/2 < 𝛽(𝜎) ≤ 1.

A6. For some random constant 𝐶𝜇(𝜔) |𝜇((0, 𝑡])| ≤ 𝐶𝜇(𝜔), 𝑡 ∈ (0, 1].
For SM 𝜇 we consider the Fourier series

∑︀
𝑘∈Z 𝜉𝑘 exp {2𝜋𝑖𝑘𝑡}, 𝜉𝑘 =

∫︀
(0,1]

exp {−2𝜋𝑖𝑘𝑡} 𝑑𝜇(𝑡),

and its partial sums 𝑆𝑗(𝑡) =
∑︀

|𝑘|≤𝑗 𝜉𝑘 exp {2𝜋𝑖𝑘𝑡}.
Denote

𝑢𝑗(𝑡, 𝑥) =
1

2
(𝑢0(𝑥 + 𝑎𝑡) − 𝑢0(𝑥− 𝑎𝑡)) +

1

2𝑎

∫︁ 𝑥+𝑎𝑡

𝑥−𝑎𝑡

𝑣0(𝑦) 𝑑𝑦

+
1

2𝑎

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑥+𝑎(𝑡−𝑠)

𝑥−𝑎(𝑡−𝑠)

𝑓(𝑠, 𝑦, 𝑢𝑗(𝑠, 𝑦)) 𝑑𝑦 +
1

2𝑎

∫︁
(0,𝑡]

𝑆𝑗(𝑠) 𝑑𝑠

∫︁ 𝑥+𝑎(𝑡−𝑠)

𝑥−𝑎(𝑡−𝑠)

𝜎(𝑠, 𝑦) 𝑑𝑦 .

(2)

Theorem 1. Let A1 – A6 be fulfilled, and assume that the following conditions hold: if

ℎ ∈ L2((0, 1]) then ℎ is integrable w. r. t. 𝜇, and

if

∫︁
(0,1]

|ℎ𝑗(𝑥)|2 𝑑𝑥 → 0, 𝑗 → ∞ then

∫︁
(0,1]

ℎ𝑗(𝑥) 𝑑𝜇(𝑥)
P→ 0, 𝑗 → ∞.

Then 𝑢 from (1) and 𝑢𝑗 from (2) have versions such that for every 0 < 𝛿 < 1

sup
𝑥∈R,𝑡∈[0,1−𝛿]

|𝑢𝑗(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)| P→ 0, 𝑗 → ∞.

Changing the integrator by Fejèr sums 𝑆𝑗(𝑡) = 1
𝑗+1

∑︀
0≤𝑘≤𝑗 𝑆𝑘(𝑡) we also obtain the

approximations of solution 𝑢 of equation (1).
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Let 𝜒𝑛(𝑥) be the classical orthonormal Haar system in (0, 1]. We consider the process
�̃�(𝑡) = 𝜇((0, 𝑡]), 0 ≤ 𝑡 ≤ 1.
For 2𝑘 + 1 ≤ 𝑛 ≤ 2𝑘+1, the Fourier-Haar coefficients of 𝜇 have the form

𝜂𝑛 = 2𝑘/2
(︁
−𝑑𝑖𝑘�̃�

(︀
𝑑𝑖𝑘
)︀

+ 2𝑑2𝑖−1
𝑘+1 �̃�

(︀
𝑑2𝑖−1
𝑘+1

)︀
− 𝑑𝑖−1

𝑘 �̃�
(︀
𝑑𝑖−1
𝑘

)︀
−
∫︁(︀

𝑑𝑖−1
𝑘 ,𝑑2𝑖−1

𝑘+1

]︀ 𝑡 𝑑𝜇 +

∫︁(︀
𝑑2𝑖−1
𝑘+1 ,𝑑𝑖𝑘

]︀ 𝑡 𝑑𝜇)︁,
where 𝑑𝑖𝑘 = 𝑖2−𝑘, 𝑘 ≥ 0, 0 ≤ 𝑖 ≤ 2𝑘. Using the partial sums of Fourier – Haar series

𝑆𝑁(𝑥) =
∑︀𝑁

𝑛=1 𝜂𝑛𝜒𝑛(𝑥), we obtained approximation of trajectories 𝜇.

Theorem 2. For each 𝑥 ∈ (0, 1], if 𝜇({𝑥}) = 0 a.s. then 𝑆𝑁(𝑥)
P→ �̃�(𝑥), 𝑁 → ∞.

For continuous �̃� the uniform convergence of 𝑆𝑁 holds.
We consider a mild solution of the Cauchy problem to the wave equations

𝑢𝑗(𝑡, 𝑥) =
1

2
(𝑢0(𝑥 + 𝑎𝑡) − 𝑢0(𝑥− 𝑎𝑡)) +

1

2𝑎

∫︁ 𝑥+𝑎𝑡

𝑥−𝑎𝑡

𝑣0(𝑦) 𝑑𝑦

+
1

2𝑎

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑥+𝑎(𝑡−𝑠)

𝑥−𝑎(𝑡−𝑠)

𝑓(𝑠, 𝑦, 𝑢𝑗(𝑠, 𝑦)) 𝑑𝑦 +
1

2𝑎

∫︁
(0,𝑡]

𝑑𝜇𝑗(𝑠)

∫︁ 𝑥+𝑎(𝑡−𝑠)

𝑥−𝑎(𝑡−𝑠)

𝜎(𝑠, 𝑦) 𝑑𝑦 .

We obtained the convergence of 𝑢𝑗 provided that �̃�𝑗(𝑡) = 𝜇𝑗((0, 𝑡]) converge uniformly
in probability.
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SOME ESTIMATION OF HURST PARAMETER IN MEASUREMENT

ERROR MODEL

OLGA SYNIAVSKA

Let {𝜉(𝑡), 𝑡 ∈ [0, 1]} be a fractional Brownian motion with Hurst parameter 𝐻 ∈ (0, 1).
We suppose that 𝐻 is unknown and verifies 𝐻* ≤ 𝐻 < 1, with 𝐻* known.
Consider the following model with errors–in–variables. For a fixed 𝑛 ≥ 1 assume that we

observe the values 𝑋(0), 𝑋
(︀
1
𝑛

)︀
, . . . , 𝑋(1), which differ from the true values of fractional

Brownian motion {𝜉(𝑡), 𝑡 ∈ [0, 1]} at the points{︂
𝑘

𝑛

⃒⃒
0 ≤ 𝑘 ≤ 𝑛

}︂
.

These differences are the measurement errors {𝛿𝑘,𝑛
⃒⃒
0 ≤ 𝑘 ≤ 𝑛}, which do not depend on

fractional Brownian motion values {𝜉
(︀
𝑘
𝑛

)︀ ⃒⃒
0 ≤ 𝑘 ≤ 𝑛}. More precisely,

𝑋

(︂
𝑘

𝑛

)︂
= 𝜉

(︂
𝑘

𝑛

)︂
+ 𝛿𝑘,𝑛.

Suppose that 𝛿𝑘,𝑛 are i.i.d. Gaussian random variables such that 𝛿𝑘,𝑛 ≃ 𝑁(0, 𝜎2) and
𝜎2 is fixed.
Consider the Baxter sums sequences [1]:

𝑆𝑛 =
𝑛−1∑︁
𝑘=0

(︂
𝑋

(︂
𝑘 + 1

𝑛

)︂
−𝑋

(︂
𝑘

𝑛

)︂)︂2

− 2𝑛𝜎2, 𝑛 ≥ 1.

Theorem 1. Let 𝐻* ≤ 𝐻 < 1, with 𝐻* < 1 known. Then the interval (𝐼𝑙(𝑛), 𝐼𝑟(𝑛))∩(0, 1)
is the confidence interval for Hurst parameter 𝐻 with the confidence level 1 − 𝑝 ∈ (0, 1),
where

𝐼𝑙(𝑛) =
1

2

(︂
1 +

ln(1− 𝜀𝑛)− ln𝑆𝑛

ln𝑛

)︂
, 𝐼𝑟(𝑛) =

1

2

(︂
1 +

ln(1 + 𝜀𝑛)− ln𝑆𝑛

ln𝑛

)︂
,

𝜀𝑛 ≥

√︃
𝐷𝑛(𝐻*)

𝑝
, 𝐷𝑛(𝐻

*) =
10

𝑛
+ 8𝑛2𝐻*−1𝜎2 + 8𝑛4𝐻*−1

(︂
1− 1

𝑛

)︂
𝜎4+

+

⎧⎪⎨⎪⎩
2
𝑛
𝜁(4− 4𝐻*), 𝐻* ∈ (0, 3

4
);

2
𝑛
(1 + ln𝑛), 𝐻* = 3

4
;

2
𝑛

(︁
1 + 𝑛4𝐻*−3

4𝐻*−3

)︁
, 𝐻* ∈

(︀
3
4
, 1
)︀
,

𝜁(𝑠) =
∞∑︁
𝑛=1

1

𝑛𝑠
, 𝑠 > 1.
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SIMULATION OF STOCHASTIC FIELDS AND TESTING HYPOTHESES

ABOUT THEIR COVARIANCE FUNCTIONS.

V. TROSHKI, N. TROSHKI

Let 𝑋 = {𝑋(𝑡, 𝑥), 𝑡 ∈ R, 𝑥 ∈ [0, 2𝜋]} be a mean square continuous real Gaussian
homogeneous and isotropic stochastic field on R2.

𝑋(𝑡, 𝑥) =
∞∑︀
𝑘=1

cos(𝑘𝑥)
∞∫︀
0

𝐽𝑘(𝑡𝜆)𝑑𝜂1,𝑘 +
∞∑︀
𝑘=1

sin(𝑘𝑥)
∞∫︀
0

𝐽𝑘(𝑡𝜆)𝑑𝜂2,𝑘,

where 𝜂𝑖,𝑘, 𝑖 = 1, 2, 𝑘 = 1,∞ are independent Gaussian processes with independent in-
crements, E𝜂𝑖,𝑘(𝜆) = 0, E(𝜂𝑖,𝑘(𝑏) − 𝜂𝑖,𝑘(𝑐))2 = 𝐹 (𝑏) − 𝐹 (𝑐), 𝑏 > 𝑐, 𝐹 (𝜆) is the spectral

function. Let 𝐽𝑘(𝑢) = 1
𝜋

𝜋∫︀
0

cos(𝑘𝜙−𝑢 sin𝜙)𝑑𝜙 be the Bessel functions of the first kind. Let

𝐵(𝑟) = 2
𝑛−2
2 Γ

(︀
𝑛
2

)︀ ∫︀ +∞
0

𝐽𝑛−2
2

(𝜆𝑟)

(𝜆𝑟)
𝑛−2
2

𝑑Φ(𝜆) be the covariance function of the field. The process

�̂�(𝑡, 𝑥) =
𝑀∑︀
𝑘=1

cos(𝑘𝑥)
𝑁−1∑︀
𝑙=0

𝜂1,𝑘,𝑙𝐽𝑘(𝑡𝜁𝑙) +
𝑀∑︀
𝑘=1

sin(𝑘𝑥)
𝑁−1∑︀
𝑙=0

𝜂2,𝑘,𝑙𝐽𝑘(𝑡𝜁𝑙),

is considered as a model of the field 𝑋(𝑡, 𝑥) where 𝜂𝑖,𝑘,𝑙, 𝑖 = 1, 2 are independent Gaussian

random variables, 𝜂𝑖,𝑘,𝑙 =
𝜆𝑙+1∫︀
𝜆𝑙

𝑑𝜂𝑖,𝑘(𝜆) are such that E𝜂𝑖,𝑘,𝑙 = 0, E𝜂2𝑖,𝑘,𝑙 = 𝐹 (𝜆𝑙+1)−𝐹 (𝜆𝑙) =

𝑏2𝑙 , 𝜁𝑙, 𝑙 = 0, ..., 𝑁 − 2 are independent random variables being independent of 𝜂𝑖,𝑘,𝑙 and
assuming values in the intervals [𝜆𝑙, 𝜆𝑙+1], 𝜁𝑁−1 = Λ, 𝑏2𝑙 > 0 are such that

𝐹𝑙(𝜆) = 𝑃{𝜁𝑙 < 𝜆} =
𝐹 (𝜆) − 𝐹 (𝜆𝑙)

𝐹 (𝜆𝑙+1) − 𝐹 (𝜆𝑙)
.

Accuracy and reliability of the model in the space 𝐿𝑝(T), 𝑝 ≥ 1.

Theorem 1. Let 1
2
< 𝛼 ≤ 1 and let

∞∫︀
0

𝜆2𝛼𝑑𝐹 (𝜆) < ∞. Assume that a partition 𝐿 used to

construct a model �̂�(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ [0, 2𝜋], is such that 𝐼 ≤ 𝛽𝑝

max

(︂
(2 ln 2

𝛿 )
𝑝
2 ,𝑝

𝑝
2

)︂ , where

𝐼 = 𝑇 𝑝𝛼+1

𝑝𝛼+1

(︂
2𝑝𝐷3

𝑝𝑀
𝑝
2

(2𝛼−1)
𝑝
2

(︀
2𝛼− 1

𝑀2𝛼−1

)︀ 𝑝
2 2

𝑝
2
+1 · 4𝑝(1−𝛼)𝜋𝑝𝛼+1

(︂
𝑁−2∑︀
𝑙=0

|𝜆𝑙+1 − 𝜆𝑙|2𝛼𝑏2𝑙
)︂ 𝑝

2

+

+𝐷𝑝2
𝑝(1−𝛼)+1𝜋𝑝𝛼+1

(︁
4

(2𝛼−1)𝑀2𝛼−1

)︁ 𝑝
2

(︂∞∫︀
0

𝜆2𝛼𝑑𝐹 (𝜆)

)︂ 𝑝
2

)︃
+ 𝑇 2𝑝𝛼+1

2𝑝𝛼+1
· 2𝑝𝐷3

𝑝𝑀
𝑝
2

(2𝛼−1)
𝑝
2

(︀
2𝛼− 1

𝑀2𝛼−1

)︀ 𝑝
2 ×

×2
𝑝
2
+14𝑝(1−𝛼)𝜋𝑝𝛼+1

(︀
1+𝐶
2

)︀𝑝𝛼(︃𝑁−2∑︀
𝑙=0

|𝜆𝑙+1 − 𝜆𝑙|2𝛼
𝜆𝑙+1∫︀
𝜆𝑙

𝜆2𝛼𝑑𝐹 (𝜆)

)︃ 𝑝
2

+

+𝑇 · 22𝑝+1𝜋𝐷2
𝑝𝑀

𝑝(𝐹 (+∞) − 𝐹 (Λ))
𝑝
2 ,
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and where 𝐶 = max
0<𝑙≤𝑁−2

𝜆𝑙+1

𝜆𝑙
, 𝐷𝑝 =

{︂
1, if 0 < 𝑝

2
≤ 1,

2
𝑝
2
−1, if 𝑝

2
> 1

. Then the model �̂�(𝑡, 𝑥)

approximates the Gaussian field 𝑋(𝑡, 𝑥) with reliability 1 − 𝛿, 0 < 𝛿 < 1, and accuracy

𝛽 > 0 in the space 𝐿𝑝(T), 𝑝 ≥ 1.

Construction of a criterion for testing hypothesis. Let H be the hypothesis that
the covariance function of homogeneous and isotropic continuous in mean square Gaussian
stochastic field equals 𝐵(𝑟) for 0 ≤ 𝑟 ≤ 𝐴.

Denote

𝑔(𝜀) = 2

⎯⎸⎸⎷1 +
𝜀1/𝑝

√
2

𝐶
1
𝑝
𝑝

exp

⎧⎨⎩− 𝜀
1
𝑝

√
2𝐶

1
𝑝
𝑝

⎫⎬⎭ .

Let 𝜀 ≥ 𝑧𝑝 = 𝐶𝑝

(︁
𝑝√
2

+
√︀

(𝑝
2

+ 1)𝑝
)︁𝑝

and 𝜀𝛿 be a solution of the equation 𝑔(𝜀) = 𝛿,

0 < 𝛿 < 1. Put 𝑆𝛿 = max{𝜀𝛿, 𝑧𝑝}. It is obviously that 𝑔(𝑆𝛿) ≤ 𝛿 and

𝑃

⎧⎨⎩
𝐴∫︁

0

(�̂�(𝑟) −𝐵(𝑟))𝑝𝑑𝑟 > 𝑆𝛿

⎫⎬⎭ ≤ 𝛿. (1)

From the paper [3] and (1) it follows that to test the hypothesis H one can use the
following criterion.

Criterion 1. For a given level of confidence 𝛿 the hypothesis H is accepted if

𝐴∫︁
0

(�̂�(𝑟) −𝐵(𝑟))𝑝𝑑𝜇(𝑟) < 𝑆𝛿,

otherwise hypothesis is rejected.
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CONVERGENCE OF SOLUTIONS OF SDES TO COALESCING HARRIS

FLOWS

M.B. VOVCHANSKII

Let D(𝑅) be a separable topological space of nondecreasing right-continuous functions
on 𝑅 equipped with the Skorokhod topology.

Definition 1. A Harris flow [1, 3, 4] 𝑋 with the infinitesimal covariance 𝜙 is a family of
D(𝑅)−valued random variables {𝑋(𝑠, 𝑡) ≡ 𝑋(·, 𝑠, 𝑡) | 𝑠 ≤ 𝑡} such that

(1) for any 𝑠 ≤ 𝑡 ≤ 𝑟 𝑃 {𝑋(·, 𝑠, 𝑟) = 𝑋(·, 𝑡, 𝑟) ∘𝑋(·, 𝑠, 𝑡)} = 1; 𝑋(𝑠, 𝑠) = 𝐼𝑑 a.s.;
(2) for any 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑛 random elements 𝑋(𝑡1, 𝑡2), . . . , 𝑋(𝑡𝑛−1, 𝑡𝑛) are indepen-

dent;
(3) for any 𝑠, 𝑡 ∈ R, ℎ > 0 𝐿𝑎𝑤(𝑋(𝑠, 𝑡)) = 𝐿𝑎𝑤(𝑋(𝑠+ ℎ, 𝑡+ ℎ));
(4) 𝑋(0, ℎ) → 𝐼𝑑 in probability as ℎ → 0+;
(5) for any 𝑥 the process 𝑡 ↦→ 𝑋(𝑥, 0, 𝑡) − 𝑥 is a Brownian motion started at 0 w.r.t.

the filtration {𝑋(𝑢1, 𝑢2), 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 𝑡}𝑡≥0 ;
(6) for any 𝑥, 𝑦

⟨𝑋(𝑥, 0, ·), 𝑋(𝑦, 0, ·)⟩ (𝑡) =
∫︁ 𝑡

0

𝜙(𝑋(𝑥, 0, 𝑠)−𝑋(𝑦, 0, 𝑠))𝑑𝑠.

A sequence of Harris flows with infinitesimal covariances 𝜙𝑛 converges as diffusions [2] to
a Harris flow with infinitesimal covariance 𝜙, as the functions 𝜙𝑛 converge to 𝜙 uniformly
on compact sets [1]. A stronger result is presented in the talk. We consider a particular
case of a Harris flow 𝑋 whose infinitesimal covariance is a characteristic function 𝜙 of a
symmetric 𝛼−stable distribution with 𝛼 ∈ (0; 2).

If
∫︀ 𝛿

0
𝑥

1−𝜙(𝑥)
𝑑𝑥 is finite for any small positive 𝛿 a Harris flow can be referred to as a

coalescing flow in the sense that any two Brownian particles carried by the flow meet
with probability 1 and stick together after the collision. In this case a mapping 𝑋(·, 𝑠, 𝑡)
is discontinuous. However, one can still consider an inverse flow [1, 5] defined via

𝑋−1(𝑥, 𝑠, 𝑡) = sup{𝑦 : 𝑋(𝑦, 𝑟, 𝑡) ≤ 𝑥, 𝑟 ≤ 𝑠}.

Let C([𝑎; 𝑏]) be a space of continuous functions on [𝑎; 𝑏] equipped with the topology of
uniform convergence, and M(R) be a space of locally finite Radon measures on the real
line equipped with the vague topology. In product spaces the product topology is always
considered.

Theorem 1. Suppose that {𝜙𝑛}𝑛∈N is a sequence of symmetric infinitely differentiable

nonnegative functions such that 𝜙𝑛 converge to 𝜙 uniformly on compact sets as 𝑛 → ∞.
For each 𝑛, define a stochastic flow {𝑋𝑛(·, 𝑠, 𝑡) | 0 ≤ 𝑠 ≤ 𝑡} as a solution to the following

SDE:

𝑋𝑛(𝑥, 𝑠, 𝑡) = 𝑥+

∫︁ 𝑡

𝑠

𝐹𝑛(𝑋𝑛(𝑥, 𝑠, 𝑟), 𝑑𝑟),
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where 𝐹𝑛 = {𝐹𝑛(𝑥, 𝑡) | 𝑥 ∈ R, 𝑡 ∈ R+} is a centered Gaussian field with covariance

min{𝑡, 𝑠}𝜙𝑛(𝑥− 𝑦). Then

(1) for any 𝑥1, . . . , 𝑥𝑁 , 𝑥𝑖 ∈ R, 𝑖 = 1, 𝑁,𝑁 ∈ N, 0 ≤ 𝑠 ≤ 𝑡(︀
𝑋𝑛(𝑥1, 𝑠, ·), . . . , 𝑋𝑛(𝑥𝑁 , 𝑠, ·), 𝑋−1

𝑛 (𝑥1, ·, 𝑡), . . . , 𝑋−1
𝑛 (𝑥𝑁 , ·, 𝑡)

)︀
⇒(︀

𝑋(𝑥1, 𝑠, ·), . . . , 𝑋(𝑥𝑁 , 𝑠, ·), 𝑋−1(𝑥1, ·, 𝑡), . . . , 𝑋−1(𝑥𝑁 , ·, 𝑡)
)︀
, 𝑛 → ∞,

in (C([𝑠; 𝑡]))2𝑁 ;

Let 𝜆 be the Lebesque measure on the real line. For 𝑛 ∈ N, 0 ≤ 𝑠 ≤ 𝑡, define the

following M(R)−valued random elements:

𝜇𝑛(𝑠, 𝑡) = 𝜆 ∘𝑋𝑛(·, 𝑠, 𝑡)−1, 𝜇(𝑠, 𝑡) = 𝜆 ∘𝑋(·, 𝑠, 𝑡)−1,

�̂�𝑛(𝑠, 𝑡) = 𝜆 ∘𝑋−1
𝑛 (·, 𝑠, 𝑡)−1, �̂�(𝑠, 𝑡) = 𝜆 ∘𝑋−1(·, 𝑠, 𝑡)−1.

Then

(2) for any 𝑠1 ≤, . . . ≤ 𝑠𝑁 , 𝑠𝑡 ≤, . . . ≤ 𝑡𝑁 , 𝑠𝑖 ≤ 𝑡𝑖, 𝑖 = 1, 𝑁,𝑁 ∈ N
(𝜇𝑛(𝑠1, 𝑡1), . . . , 𝜇𝑛(𝑠𝑁 , 𝑡𝑁), �̂�𝑛(𝑠1, 𝑡1), . . . , �̂�𝑛(𝑠𝑁 , 𝑡𝑁))

⇒ (𝜇(𝑠1, 𝑡1), . . . , 𝜇(𝑠𝑁 , 𝑡𝑁), �̂�(𝑠1, 𝑡1), . . . , �̂�(𝑠𝑁 , 𝑡𝑁)) , 𝑛 → ∞,

in (M(R))2𝑁 .

The nature of noises associated with Harris flows [4, 6] implies that for 𝛼 ∈ (0; 1) the
weak convergence in Theorem 1 cannot be replaced with a stronger one.
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NEW RESULTS ON ESTIMATION OF IMPULSE RESPONSE

FUNCTIONS

V. ZAIATS, I. BLAZHIEVSKA

Identification and estimation of linear systems, in a parametric or non-parametric
framework, is often based on “black-box” models. The input to a black box may be
single or multiple, perfect or noisy, and the same happens to the output. These models
arise in different disciplines within engineering and science, such as control, communica-
tions and networks, signal processing, biology. An important feature of any linear system
is that it is uniquely identified by means of its impulse response function. In Chapter 5 of
their classical book [1], Gikhman and Skorokhod mentioned the possibility of using linear
transformations of stochastic processes for statistical analysis of “black-box” models. In
this presentation, we consider a single input–double output channel model described by
a linear time-invariant system whose IRF has two 𝐿2-integrable components. Then the
outputs belong to the class of Wiener shot noise processes and include solutions of many
stochastic differential equations under a fixed choice of the kernels. We assume that IRF
in one channel is unknown while it is known in another channel and focus on estimation
of the unknown IRF after observations of the outputs in both channels. Different de-
terministic and statistical approaches to this problem have been used. In a cornerstone
monograph [2], a “polynomial” representation for systems with Gaussian white noise in-
puts was set down and analysis–synthesis of these systems was discussed. Identification
or estimation problems for polynomial systems using Gaussian inputs can be formulated
in terms of Fourier/Laplace transforms. In both approaches, the system was supposed to
be stable requiring the kernels to be 𝐿1-integrable.
The papers [3], [4], [5], [6] [7] have successfully removed the restriction of Gaussian

white noise inputs and that of system’s stability. The approach in these papers was
based on: (i) a specific approximation of Gaussian white noise inputs, and (ii) cross-
correlating system’s input and output. It was applied to estimation of 𝐿2-integrable IRFs
in linear time-invariant (LTI) single input–single output (SISO) systems. Further, theory
of square-Gaussian processes has been used in assessing estimator’s supremum and to test
hypothesis on IRFs; see [8], [9], and [10]. In our presentation, we would like to extend
these results to SIDO-systems.
The choice of our approach is motivated by an attempt to set a link between three

theories:

∙ 𝐿2-theory for kernels of stochastic integrals;
∙ cumulant analysis applied to sample cross-correlograms;
∙ theory of integrals involving cyclic products of kernels.

The next step is to apply cumulant analysis of sample cross-correlorams of Gaussian
stationary processes. Here, an important role is played by integral representations for
higher-order cumulants driven by the estimator of the unknown IRF. The well-known
combinatorial diagram formulae enable us to reduce the cumulants to finite sums of multi-
dimensional integrals involving cyclic products of kernels and dependent on parameters.
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Convergence to zero of these integrals leads to asymptotic normality of the estimator. Our
proof of the CLT is based on the theory of integrals involving cyclic products of kernels,
see [5], rather then on the theory of Delta matroid integrals developed in [11], [12], [13].
The reason is in the desire to keep unaltered the weakest possible 𝐿2-restriction on the
unknown IRF.
Acknowledgements. Work partially supported by the MINECO grant MTM2015-69493-R.
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Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields

// ESAIM: Probability and Statistics, EDP Sciences — 2010. — V. 14. — P. 210–255.
[13] Avram F., Leonenko N.N., Sakhno L.M. Limit theorems for additive functionals of stationary fields,

under integrability assumptions on the higher order spectral densities // Stochastic Processes and
their Applications — 2015. — V. 125, No. 4. — P. 1629–1652.
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THE RATE OF GROWTH OF THE COMPOUND RENEWAL

PROCESSES AND THEIR INCREMENTS

N.M. ZINCHENKO

Let 𝐷(𝑡) be a compound renewal processes (random sum, randomly stopped sum) of
the form

𝐷(𝑡) = 𝑆(𝑁(𝑡)) =

𝑁(𝑡)∑︁
𝑖=1

𝑋𝑖, (1)

where {𝑋𝑖, 𝑖 ≥ 1} are r.v., 𝑆(𝑡) =
∑︀[𝑡]

𝑖=1 𝑋𝑖, 𝑡 > 0, 𝑆(0) = 0; {𝑍𝑖, 𝑖 ≥ 1} is another

sequence of non-negative r.v. independent of {𝑋𝑖}, 𝑍(𝑥) =
∑︀[𝑥]

𝑖=1 𝑍𝑖, 𝑥 > 0, 𝑍(0) = 0 and
renewal (counting) process 𝑁(𝑡) is defined as 𝑁(𝑡) = inf{𝑥 ≥ 0 : 𝑍(𝑥) > 𝑡}.
Our main task is to find the conditions on {𝑋𝑖} and {𝑍𝑖} and the form of normalizing

function 𝑓(𝑡) and the centering function 𝑚(𝑡), for which a.s.

lim sup
𝑡→∞

(𝐷(𝑡)−𝑚(𝑡)) /𝑓(𝑡) = 𝑐𝑜𝑛𝑠𝑡 and/or lim inf
𝑡→∞

(𝐷(𝑡)−𝑚(𝑡)) /𝑓(𝑡) = 𝑐𝑜𝑛𝑠𝑡.

We proposed a number of integral tests for investigation the rate of growth of the
compound renewal processes 𝐷(𝑡) as 𝑡 → ∞. The cases of independent, weakly dependent
and associated summands are studied as well as random variables satisfying 𝜙-mixing
conditions. For example, when both {𝑋𝑖} and {𝑍𝑖} are i.i.d.r.v. and have moments of
order 𝑝 ≥ 2, then non-decreasing function 𝑓(𝑡) = 𝑐𝑡1/2ℎ(𝑡), ℎ(𝑡) ↑ ∞, 𝑐 > 0, will be
an upper (lower) function for centered process (𝐷(𝑡) − 𝑚𝜆𝑡), 𝐸𝑋1 = 𝑚, 𝐸𝑍1 = 1/𝜆,
according to convergence (divergence) of the integral∫︁ ∞

1

𝑡−1ℎ(𝑡) exp{−ℎ2(𝑡)/2}𝑑𝑡.

In the case when i.i.d.r.v. {𝑋𝑖} are attracted to asymmetric stable law 𝐺𝛼1,−1, the problem
connected with upper (lower) functions for centered process (𝐷(𝑡)−𝑚𝜆𝑡) is solved with
the help of integral ∫︁ ∞

1

𝑡−1ℎ−𝜃1/2(𝑡) exp{−𝐵ℎ𝜃1(𝑡)}𝑑𝑡,

where

𝐵 = 𝐵(𝛼1) = (𝛼1 − 1)𝛼−𝜃1
1 | cos(𝜋𝛼1/2)|1/(𝛼1−1), 𝜃1 = 𝛼1/(𝛼1 − 1).

Mentioned integral tests give the possibility to prove various modifications of the LIL
for 𝐷(𝑡), for instance, we have

Theorem 1. (Classical LIL for compound renewal processes). Let {𝑋𝑖} and {𝑍𝑖} be
independent sequences of i.i.d.r.v. with 𝐸𝑋1 = 𝑚 < ∞, 0 < 𝐸𝑍1 = 1/𝜆 < ∞, 𝜎2 =
𝑉 𝑎𝑟𝑋1 < ∞, 𝜏 2 = 𝑉 𝑎𝑟𝑍1 < ∞. Then a.s.

lim sup
𝑡→∞

|𝐷(𝑡)−𝑚𝜆𝑡|√
2𝑡 ln ln 𝑡

= 𝜈, 𝜈2 = 𝜆𝜎2 + 𝜆3𝑚2𝜏 2. (2)
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Corresponding proofs are based on rather general theorems about the strong approxi-
mation of the random sums by a Wiener or 𝛼-stable Lévy process under various moment
and dependence assumptions on {𝑋𝑖} and {𝑍𝑖} [1].
Integral tests also occur to be useful when investigating the rate of growth of increments

𝐷(𝑡+ 𝑎𝑡)−𝐷(𝑡) =

𝑁(𝑡+𝑎𝑡)∑︁
𝑖=𝑁(𝑡)+1

𝑋𝑖 (3)

on the intervals, whose length 𝑎𝑡 grows as 𝑡 → ∞, but not faster than 𝑡. As a consequence
various modifications of the Erdös-Rényi-Csörgő-Révész-type SLLN for compound renewal
processes were obtained.
Mentioned results, besides pure theoretical, have also certain practical interest, since

compound renewal processes are successfully used in actuarial mathematics in various risk
models: in rather popular Sparre-Anderssen collective risk model random sum 𝐷(𝑡) =
𝑆(𝑁(𝑡)) is interpreted as a total claim amount arising during time interval [0, 𝑡] and its
increments 𝐷(𝑡+ 𝑎𝑡)−𝐷(𝑡) - as claim amount during time interval [𝑡, 𝑡+ 𝑎𝑡]; in classical
Cramér-Lundberg risk model 𝐷(𝑡) is a compound Poisson process with intensity 𝜆 > 0.
Thus, our results describe the rate of growth and fluctuations of the reserve capital and
total claim payments. Finding the non-random boundaries 𝑓(𝑡) for the rate of growth of
𝐷(𝑡) and their increments helps to analyze and plan insurance activities and to specificate
the value of insurance premiums and reserves [2].
The case of risk models with stochastic premiums [3] is also interesting but more com-

plicated for investigation, some results for such models are also obtained.
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