О. І. Клесов

ВИБРАНІ ПИТАННЯ ТЕОРІЇ ЙМОВІРНОСТЕЙ ТА МАТЕМАТИЧНОЇ СТАТИСТИКИ

Київ 2013

3 M I C T

Π ередмова7		
1. Простір елементарних подій	9	
1.1. Задача про справедливий розподіл ставок	9	
1.2. Стохастичний експеримент	9	
1.3. Ймовірність	14	
1.4. Правила обчислення ймовірностей	19	
2. Ймовірнісна міра	25	
2.1. Дискретні ймовірності	25	
2.2. Правила для обчислення ймовірностей	34	
2.3. Неперервні ймовірності	37	
3. Умовна ймовірність	47	
3.1. Звуження ймовірнісного простору	47	
3.2. Правило множення ймовірностей	51	
3.3. Формула повної ймовірності	55	
3.4. Незалежні події	63	
4. Випадкові величини	73	
4.1. Дискретні випадкові величини з скінченою		
кількістю значень	73	
4.2. Схема Бернуллі	78	
4.3. Дискретні випадкові величини з нескінченою		
кількістю значень	88	
4.4. Неперервні випадкові величини	92	

5 .	$M\epsilon$	атематичне сподівання106
	5.1.	Закон великих чисел106
	5.2.	Математичне сподівання дискретних випадкових
		величин з скінченною кількістю значень 108
	5.3.	Математичне сподівання дискретних випадкових
		величин з нескінченною кількістю значень114
	5.4.	Математичне сподівання неперервних випадкових
		величин116
	5.5.	Залежні та незалежні випадкові величини120
	5.6.	Дисперсія випадкової величини125
6.	Но	рмальний розподіл140
		Стандартна нормальна щільність
		Стандартна нормальна функція розподілу142
		Сім'я нормальних розподілів
	6.4.	Сім'я нормальних функцій розподілу
		Нормальні випадкові величини
	6.6.	Апроксимація біноміального розподілу
		нормальним
	6.7.	Центральна гранична теорема162
7.	Ви	біркові дослідження169
	7.1.	Різниця між теорією ймовірностей та математичною
		статистикою
	7.2.	Функції статистики172
	7.3.	Діаграма176
	7.4.	Гістограма
	7.5.	Варіаційний ряд184
	7.6.	Кумулятивні характеристики

0 D 1
8. Розподіли важливих статистик190
8.1. Розподіл Стьюдента190
8.2. Розподіл хі квадрат197
8.3. Розподіл Фішера
9. Статистика однієї вибірки: оцінювання 216
9.1. Оцінка середнього значення
9.2. Оцінка ймовірності
10. Статистика однієї виборки: перевірка
гіпотез232
10.1. Нульова гіпотеза та тестова статистика233
10.2. <i>p</i> -значення
10.3. Похибки I та II роду238
10.4. Гіпотези про середнє значення240
10.5. Приклад обчислення ймовірностей помилки
II роду248
10.6. Перевірка гіпотез про середнє значення для
малих виборок251
10.7. Перевірка гіпотез про ймовірність події 253
11. Статистичні виводи на основі двох вибірок 259
11.1. Довірчий інтервал для різниці середніх значень 260
11.2. Перевірка гіпотез про різницю середніх значень 263
11.3. Порівняння двох дисперсій
11.4. Довірчий інтервал для відношення дисперсій278
11.5. Порівняння двох невідомих ймовірностей279
11.6. Необхідний розмір вибірки
12. Модель простої лінійної регресії 291
12.1. Оцінки методу найменших квадратів295

12.2. Модель лінійної залежності двох змінних299				
12.3. Оцінка дисперсії похибок				
12.4. Перевірка гіпотези про значущість коефіцієнта				
лінійної регресії303				
12.5. Довірчий інтервал для коефіцієнта регресії 307				
12.6. Коефіцієнт кореляції				
12.7. Коефіцієнт детермінації				
12.8. Використання регресійної моделі				
12.9. Приклад аналізу на основі регресійної прямої319				
Список позначень				
Рекомендована література329				
Предметний покажчик				

Передмова

Курс теорія ймовірностей та математична статистика відіграє важливу роль у підготовці спеціалістів з економіки. Значення його полягає в ознайомленні з методами та прийомами математичного вивчення явищ та об'єктів ринкового середовища, яким об'єктивно притаманний стохастичний характер. Цей курс належить до базових і спирається на знання, уміння та навички, набуті при вивченні курсу вища математика для економістів. З іншого боку, він є базою для подальшого вивчення курсів економетрика та статистика.

Особливістю посібника є максимально швидкий перехід від теоретичних концепцій теорії ймовірностей до процедур математичної статистики в умовах вкрай обмеженого ресурсу лекцій. Математичні доведення, якщо представлені, демонструються на конкретних випадках, щоб уникнути недоречної "математизації". З іншого боку, всі правила ймовірнісних та статистичних процедур пояснюються і демонструються на прикладах.

Приклади та розв'язані задачі підібрані таким чином, щоб наблизити їхні формулювання до предметної області студентів, у якій вони навчаються. Звичайно, що при цьому неможливо уникнути традиційних прикладів з підкиданням монети або грального кубика.

За рахунок прикладів у цьому посібнику матеріалу міститься набагато більше, ніж лектор зможе викласти про-

тягом короткого курсу лекцій. Наявність більшої кількості розглянутих прикладів дозволить зацікавленим студентам самостійно ознайомитись з різними задачами та способами їх розв'язання, які не увійшли до матеріалу лекцій.

У посібнику вміщено багато таких задач, формулювання яких є повчальним саме по собі, оскільки містить відомості з певних галузей знань, про які йдеться у задачах. Це допоможе студентам розширити "горизонти" своїх загальних знань. Студенти можуть досить швидко забути спосіб розв'язання конкретной задачі, але пригадають її формулювання, якщо воно подано у термінах тієї галузі знань, у якій вони навчаються. Це може прислужитися їм навіть через кілька років, коли у своїй практичній роботі вони зустрінуться зі схожими задачами.

Вправи, наведені в кінці кожної глави, можна використати під час аудиторних робіт та для самостійної роботи студентів.

Я сподіваюсь, що посібник знайде своїх зацікавлених читачів, від яких надійдуть зауваження та поради стосовно змісту та характеру викладення матеріалу.

Aemop

ДОДАТОК

Обчислення функцій розподілу в Excel

НОРМРАСП $(x;\mu;\sigma;\mathbf{i})$	$\Phi_{\mu,\sigma^2}(x)$, якщо ${ t i}={ t false}$ або $arphi_{\mu,\sigma^2}(x)$, якщо ${ t i}={ t true}$
HOPMOBP $(q;\mu;\sigma^2)$	q-квантиль нормального розпо- ділу з параметрами (μ,σ^2)
СТЪЮДРАСП $(x;m;\mathtt{i})$	$P(X \ge x)$ або $2P(X \ge x)$, якщо i=1 або $i=2$; де X — випадкова величина, яка має розподіл Стью- дента з m ступенями свободи
СТЪЮДРАСПОБР $(p;m)$	<i>p</i> -критична точка розподілу Стьюдента з <i>m</i> ступенями свободи
XИ2РАСП $(x;m)$	$P(X \ge x)$; де X — випадкова величина, яка має розподіл χ^2 з m ступенями свободи
ХИ20БР $(p;m)$	p -критична точка розподілу χ^2 з m ступенями свободи
${\tt FPACH}\ (x;m;n)$	$P(X \ge x)$, де X — випадкова величина, яка має розподіл Фішера з (m,n) ступенями свободи
$\texttt{FPACHOEP}\ (p;m;n)$	p-критична точка розподілу Фішера з (m,n) ступенями свободи