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MATHEMATICAL RESEARCH ACHIEVEMENTS OF

V. V. BULDYGIN

K.-H. INDLEKOFER, O. I. KLESOV, J. G. STEINEBACH

We provide a brief account of life and mathematical achievements
of Prof. V. V. Buldygin in this talk.

V. V. Buldygin
(05.11.1946–17.04.2012)

V. V. Buldygin was born on November 5, 1946 in Tbilisi.
In 1965, he entered Taras Shevchenko Kiev National University and

graduated from the Faculty for Mechanics and Mathematics in 1970.
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He was granted the gold medal of the Ministry of Education of the
Soviet Union for his graduation theses.

After obtaining his Ph.D. in 1973 from the Department of Proba-
bility Theory and Mathematical Statistics of Taras Shevchenko Kiev
National University, he joined the Institute of Mathematics of the Na-
tional Academy of Science of Ukraine and worked under the super-
vision of Anatolii Volodymyrovych Skorokhod till 1986. In 1982, he
obtained the degree of Doctor in Physics and Mathematics (equivalent
of Dr. hab.).

V. V. Buldygin was appointed as the Head of the Department of
Mathematical Analysis and Probability Theory of the National Tech-
nical University of Ukraine “Kyiv Polytechnic Institute” in 1986 and
guided this department till his death. He was promoted to Professor
in 1987.

The field of his mathematical investigations was very broad. In the
1980th, his scientific interests, as a researcher of Institute of Mathe-
matics, were focused on the convergence of random elements in linear
spaces. Well known are his results on the sums of independent random
elements in Banach spaces (a generalization of the Lévy inequality,
comparison principle for series of independent terms, contraction prin-
ciple for Gaussian random variables, etc.). His doctoral dissertation
“Convergence of Random Elements in Topological Spaces” was pub-
lished in 1980 [1]. In 1985, he coauthored another monograph “The
Brunn–Minkowski inequality and its applications” (written jointly with
A. Kharazishvili) [2]. The latter monograph was translated into Eng-
lish by Kluwer Academic Publishers in 2000.

In the 1970s, he started to study the concept of sub-Gaussian dis-
tributions. His results on this topic are summarized in the monograph
“Metric characterization of random variables and random processes”
written jointly with Yu. V. Kozachenko (the Russian edition is pub-
lished by TBiMC in 1998, and the English edition appeared in 2000
via AMS).

Simultaneously, he developed the methods for studying the oscilla-
tory properties of Gaussian sequences and the limit theorems for sums
of independent random terms with operator normalizations. These
results were included in his monograph “Functional methods in prob-
lems of the summation of random variables” [3] written jointly with
S. A. Solntsev (the Russian edition appeared in 1989; it was translated
into English in 1997 by Kluwer Academic Publishers).
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In the 1990s, he studied the statistical properties of the estimators
for correlation functions of stationary Gaussian stochastic processes
and random fields, asymptotic behavior of solutions of stochastic dif-
ference equations, exponential estimates for the distributions of maxi-
ma of stochastic processes. Other fields of his interests covered, in
particular, the statistical estimates of impulse transfer functions for
linear systems, properties of empirical correlograms, and the Lévy-
Baxter theorems for shot-noise processes.

In the last decade, his interests switched to studying the so-called
generalized renewal processes and the corresponding classes of func-
tions. He introduced the so-called functions with a group of regular
points and proved an analog of Karamata’s representation theorems
for them. His last monograph “Pseudo-Regularly Varying Functions
and Generalized Renewal Processes” [5] appeared soon after his death.

Renewal theory is a branch of probability theory rich of fascinating
mathematical problems and also of various important applications. On
the other hand, regular variation of functions is a property that plays
a key role in many fields of mathematics. One of the main aims of [5] is
to exhibit some fruitful links between these two areas via a generalized
approach to both of them. The interest in generalizing the notion of
Karamata’s regular variation was stimulated by some applications to
certain asymptotic problems in renewal theory and can be traced back
to the very first days of this century.

Generally, we call two objects dual if they are inverse to each other
in some sense and their asymptotic properties are related to each other,
that is, if a limit result for the first object implies a corresponding one
for the second object, and vice versa. The duality of the renewal pro-
cess {𝑁𝑡} and the corresponding sequence of sums of random variables
{𝑆𝑛} is the starting point for researches presented in [5].

Some problems on asymptotic behavior of sequences of sums whose
terms are elements of one-dimensional and multi-dimensional linear
regressions with independent and symmetric noise are studied in [6].
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PROPERTIES OF ESTIMATORS OF RESPONSE

FUNCTIONS IN TWO-DIMENSIONAL SYSTEMS

I. P. BLAZHIEVSKA

Let us consider a ”black box”:

𝑊 𝐻

𝑔Δ

𝑌

𝑋Δ

which is described by the linear two-dimensional system. Its response
function has real-valued components – an unknown function 𝐻 =
(𝐻(𝜏), 𝜏 ≥ 0) and a known function 𝑔Δ = (𝑔Δ(𝜏), 𝜏 ≥ 0),∆ > 0.
We suppose that 𝐻 ∈ 𝐿2(R), and 𝑔Δ satisfies some general properties.
The system has two observable outputs:

𝑌 (𝑡) =

∫︁ 𝑡

−∞
𝐻(𝑡− 𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ R;

𝑋Δ(𝑡) =

∫︁ 𝑡

−∞
𝑔Δ(𝑡− 𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ R,

and the input 𝑊 = (𝑊 (𝑡), 𝑡 ∈ R) is a standard Wiener measure on R.
We investigate the properties of the sample cross-correlogram

̂︀𝐻𝑇,Δ(𝜏) =
1

𝑇

𝑇∫︁

0

𝑌 (𝑡 + 𝜏)𝑋Δ(𝑡)𝑑𝑡, 𝜏 ≥ 0,

that is taken as the estimator of 𝐻, and apply some results from [1].
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MILD SOLUTION OF PARABOLIC EQUATION WITH

STOCHASTIC MEASURE

I. M. BODNARCHUK

Let 𝜇 be a stochastic measure defined on Borel 𝜎-algebra ℬ(R), i.e.
𝜇 : ℬ(R) → 𝐿0(Ω, ℱ , P) is a 𝜎-additive mapping.

Consider the stochastic parabolic equation in the following mild
sense

𝑢(𝑡, 𝑥) =

∫︁

R
𝑝(𝑡, 𝑥; 0, 𝑦)𝑢0(𝑦) 𝑑𝑦 +

∫︁ 𝑡

0

𝑑𝑠

∫︁

R
𝑝(𝑡, 𝑥; 𝑠, 𝑦)𝑓(𝑠, 𝑦, 𝑢(𝑠, 𝑦)) 𝑑𝑦

+

∫︁

R
𝑑𝜇(𝑦)

∫︁ 𝑡

0

𝑝(𝑡, 𝑥; 𝑠, 𝑦)𝜎(𝑠, 𝑦) 𝑑𝑠 . (1)

Here 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥, 𝜔) : [0, 𝑇 ] × R × Ω → R is an unknown measur-
able random function, 𝑝(𝑡, 𝑥; 𝑠, 𝑦) is the fundamental solution of the
operator

𝐿𝑢(𝑡, 𝑥) = 𝑎(𝑡, 𝑥)
𝜕2𝑢(𝑡, 𝑥)

𝜕2𝑥
+ 𝑏(𝑡, 𝑥)

𝜕𝑢(𝑡, 𝑥)

𝜕𝑥
+ 𝑐(𝑡, 𝑥)𝑢(𝑡, 𝑥) − 𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
,

where functions 𝑎, 𝑏, 𝑐 are defined on the set

𝑆 = [0, 𝑇 ] × R = {(𝑡, 𝑥) : 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ R}.
Under certain assumptions regarding the coefficients of the operator 𝐿
and functions 𝑓, 𝜎, 𝑢0 we investigate the solution of (1).

The particular case of problem (1) (the heat equation) is investi-
gated in [1]. Existence and uniqueness of the mild solution are proved
in this publication. Hölder continuity of its paths in time and space
variables is established. We extend this results to the case of parabolic
equation and improve the Hölder continuity exponents.
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ONE APPROACH TO CONTROL OF LINEAR

DYNAMICAL SYSTEMS

S. V. BODNARCHUK

Consider a linear differential equation of the form

𝑥(𝑡) = 𝑥 +

∫︁ 𝑡

0

𝐴𝑥(𝑠)𝑑𝑠 + 𝐵𝛾(𝑡), 𝑡 ≥ 0, (1)

where 𝑥(0) = 𝑥 ∈ R𝑚, 𝐴 and 𝐵 are 𝑚×𝑚 and 𝑚×𝑑 matrices, respec-
tively, 𝛾 : R+ → R𝑑 is a measurable bounded function, 𝑥(·) : R+ → R𝑚

is an unknown function that displays the state of the dynamical system
at time 𝑡 > 0.

In the classical theory control problem is formulated as follows (see
[1]): given the initial point 𝑥, does there exist such function 𝛾 that
𝑥(𝑡) = 0 for some 𝑡 > 0? Such a type of control allows to prove the
ergodicity of solutions to SDE’s of diffusion type (see [2, 3]).

We propose a different approach to the concept of control (see [4]):
given the initial point 𝑥, does there exist such time transformation 𝜆 :
[0,+∞) → [0,+∞) that solution of equation (1) with inhomogeneity
𝛾(𝜆(𝑡)) coincides, for some 𝑇 > 0, with solution of this equation with
𝑥 = 0 and inhomogeneity 𝛾(𝑡)? It appears that such a type of control
allows to prove the ergodicity of solutions to SDE’s driven by Lévy
processes (see [5]).

In the report we present necessary and sufficient conditions for con-
trollability by time transformation of the equation (1).
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DIAGONAL RANDOM OPERATOR IN A SEPARABLE

HILBERT SPACE

O. O. DASHKOV

Consider 𝑙2 = {𝑥 = (𝑥1, 𝑥2, . . . ) |𝑥𝑘 ∈ R, 𝑘 ≥ 1,
∑︀∞

𝑘=1 𝑥
2
𝑘 < +∞}

as real separable Hilbert space with inner product (𝑥, 𝑦) =
∑︀∞

𝑘=1 𝑥𝑘𝑦𝑘
and norm ||𝑥|| =

√︀∑︀∞
𝑘=1 𝑥

2
𝑘. Let 𝑒𝑘 = (0, 0, . . . , 1, 0, . . . ) (unit on the

𝑘-th position), 𝑘 ≥ 1 – standard orthonormal basis in 𝑙2, 𝜉1, 𝜉2, . . . be
independent standard normal variables on probability space (Ω,ℱ , 𝑃 ).

In this paper we work with diagonal random operator 𝐴 defined as
follows

𝐴𝑥 = (𝜉𝑘𝑥𝑘)∞𝑘=1, 𝑥 = (𝑥𝑘)∞𝑘=1 ∈ 𝑙2.

We show that for the set 𝐾 = {𝑥 = (𝑥1, 𝑥2, . . . ) ∈ 𝑙2 |
∑︀∞

𝑘=1 𝑘𝑥
2
𝑘 ≤ 1}

its image under operator 𝐴 is well-defined and compact almost surely.
To investigate the properties of 𝐴(𝐾) associated with tending co-

ordinate to infinity we consider orthogonal projective operators 𝑄𝑛 on
the c.l.s. of {𝑒𝑛+1, 𝑒𝑛+2, . . . } defined as

𝑄𝑛𝑥 = (0, 0, . . . , 0, 𝑥𝑛+1, 𝑥𝑛+2, . . .), 𝑥 = (𝑥𝑛)𝑛≥1 ∈ 𝑙2, 𝑛 ≥ 1.

We prove that 𝑄𝑛 converges uniformly to zero on any compact set
𝐶 ⊂ 𝑙2.

We investigate the behavior of diameters of 𝑄𝑛𝐴(𝐾) and show that

𝑑𝑖𝑎𝑚(𝑄𝑛𝐴(𝐾)) = 2 sup𝑘>𝑛
|𝜉𝑘|√

𝑘
.

Proposition 1.

sup
𝑘>𝑛

|𝜉𝑘|√
𝑘
∼

√︂
2 ln𝑛

𝑛
, 𝑛 → ∞ a.s.

While proving, we show that for 0 < 𝑐 < 1, 𝑐2 < 𝛼 < 1 cardinality
of the set {𝑚 ∈ N : 𝑁 − 𝑁𝛼 < 𝑚 ≤ 𝑁, |𝜉𝑚| > 𝑐

√
2 ln𝑚} tends to

infinity when 𝑁 → ∞ almost surely.
Let 𝑁𝜀(𝐵) denote the smallest number of the closed balls with radii

𝜀 that cover a compact 𝐵. We show, that for 𝑅 > 𝑟 𝑁𝑟(𝐵𝑑
𝑅(0)) ≥ 𝑑+1,

where 𝐵𝑑
𝑅(0) is a closed ball in R𝑑 with radii 𝑅 and center in zero. We

use it to prove the last statement of the work:
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Proposition 2. Suppose that for a sequence 𝜀𝑛 → 0, 𝑛 → ∞ the
sequence 𝑎𝑛 = 𝑁𝜀𝑛(𝑄𝑛𝐴(𝐾)) satisfies conditions:

1) 𝑃 ( lim
𝑛→∞

{𝑎𝑛 = 1}) ̸= 1;

2) 𝑃 ({𝑎𝑛 − unbounded}) ̸= 1.

Then 𝜀𝑛 ∼
√︁

2 ln𝑛
𝑛 , 𝑛 → ∞.
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HILBERT-VALUED FUNCTIONS AND

SELF-INTERSECTIONS OF GAUSSIAN PROCESSES

A. A. DOROGOVTSEV AND O. L. IZYUMTSEVA

In the talk we establish connections between the covariance function

of the Gaussian process and properties of its self-intersection local time.

We consider the process with the following covariance function

𝐾(𝑡, 𝑠) = (𝐴𝑔0(𝑡), 𝐴𝑔0(𝑠)), 𝑠, 𝑡 ∈ [0; 1].

Here 𝑔0(𝑡) = 1[0;𝑡], 𝐴 is a continuous linear operator in 𝐿2([0; 1]). For
a one-dimensional or a two-dimensional process we study the objects

∫︁ 1

0

𝛿0(𝑥(𝑡))𝑑𝑡,

∫︁

Δ𝑛

𝑛−1∏︁

𝑗=1

𝛿0(𝑥(𝑡𝑗+1) − 𝑥(𝑡𝑗))𝑑𝑡⃗,

where ∆𝑛 = {0 ≤ 𝑡1 ≤ . . . ≤ 𝑡𝑛 ≤ 1}. The last expression is called by

the self-intersection local time and must be renormalized. The main

results establish the existence of the mentioned objects and give the

estimates of its moments. As a tool we use the properties of the

𝐿2-valued function 𝐴𝑔0(𝑡), 𝑡 ∈ [0; 1].
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DISCRETE-TIME TRAWL PROCESSES

P. DOUKHAN

The talk essentially aims at describing the ongoing joint work [3]
with Silvia Lopes, Adam Jakubowski, and Donatas Surgailis.

The classical infinite moving averages

𝑋𝑘 =

∞∑︁

𝑗=0

𝑏𝑗𝜉𝑘−𝑗 ,

∞∑︁

𝑗=0

|𝑏𝑗 | = ∞,

∞∑︁

𝑗=0

𝑏2𝑗 < ∞,

defined through an iid sequence (𝜉𝑗)𝑗 of random variable with 𝐸𝜉20 <
∞, 𝐸𝜉0 = 0 were shown to exhibit a long range dependent (LRD)
behavior in a famous paper by Davydov (1970). If 𝑏𝑗 ∼ 𝑐𝑗−𝛽 for
1
2 < 𝛽 < 1 then var 𝑆𝑛 ∼ 𝑐𝑛−(3−2𝛽) ≫ 𝑛 if 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛.
A nice paper by Barndorff-Nielsen et al. (2014) [1], provides a nice con-
tinuous time extension of this paper in which the second order behavior
of the above process is described and where an analogue distributional
behavior is also predicted for integer valued models.
The present talk describes a discrete time version of such trawl pro-
cesses provided by an iid sequence of processes 𝛾𝑘 : 𝑅 → 𝑅 and an
analogue relation

𝑋𝑘 =
∞∑︁

𝑗=0

𝛾𝑘−𝑗(𝑎𝑗), 𝑎𝑗 ∼ 𝑐𝑗−𝛼, 1 < 𝛼 < 2

then we exhibit simple conditions such that 𝐿2−LRD behavior holds
with 𝐻 = (3 − 𝛼)/2 and 𝛼 = 2𝛽.
We also fit the parameter 𝛼 . For this we quote that the covariance of
this model satisfies 𝑟𝑘 ∼ 𝑐𝑘1−𝛼, thus estimates of the covariance are
proved to satisfy ̂︀𝑟𝑘/̂︀𝑟[𝛿𝑘] → 𝛿𝛼−1. Consistency of such estimates is
deduced from a weak dependence argument.
In case 𝛼 > 2 a standard Brownian limit occurs with normalization√
𝑛.

Two classes of such processes satisfy either the same behavior as above
or 𝑛−1/𝛼(𝑆[𝑛𝑡]−𝐸𝑆[𝑛𝑡]) converges to a Lévy 𝛼−stable process in some
sense. This case includes integer valued LRD models, if 𝛾 is either
a unit Poisson process or the Bernoulli process 𝛾(𝑢) = 1{𝑈≤𝑢} for a
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uniform random variable 𝑈 on [0, 1]. A non trivial example for which
the first behavior holds is 𝛾 = 𝑊 , the Brownian motion.
If now the sequence 𝑎𝑗 is non non-increasing then we also exhibit sea-
sonal behaviors for models

𝑋𝑘 =

∞∑︁

𝑗=0

𝑐𝑗𝛾𝑘−𝑗(𝑎𝑗), 𝑎𝑗 ∼ 𝑐𝑗−𝛼, 1 < 𝛼 < 2

with 𝑐𝑗 a periodic sequence, see Bisognin and Lopes, in [4].
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STATISTICAL ANALYSIS OF TESTS IN HIGHER

MATHEMATICS

A. A. DYKHOVYCHNYI AND A. F. DUDKO

This report informs about methods of quality analysis of tests in
higher mathematics offered in the KPI.

The methods of modern statistics certainly form the basis of the
analysis of the quality of educational tests in higher mathematics.

Traditionally, these methods are divided into methods of classical
test theory (CTT) and modern methods of Item Response Theory
(IRT). CTT is based on traditional methods of statistical analysis.
The main idea of IRT-methods is introduction of two sets of latent pa-
rameters, namely set of person parameter and set of item parameters,
that are related by certain probability logistic functions.

Note that the use of classical and modern methods isn’t contra-
dictory. At the same time combined application of CTT and IRT,
interpretation and coordination of the results are of particular inter-
est.

Thus, the mathematical problems of practical application of IRT-
methods, creating of the methodology of test analysis and its software
implementation are the essence of research in the field of statistical
analysis of the test quality in higher mathematics, offered by the De-
partment of Mathematical Analysis and Probability Theory of NTUU
“KPI”. The information about these researches is presented in [1] in
more details.

References

[1] Dykhovychnyi A.A., Dudko .F. The comprehensive procedure of analysis of
tests in higher mathematics // K.: NPU imeni M.P. Drahomanova. — 2015. —

Vol. 22, no. 15. — P. 140–144.

Department of Mathematical Analysis and Probability Theory,

National Technical University of Ukraine “Kyiv Polytechnic Institute”,
37 Peremogy Avenue, 03056 Kyiv, Ukraine

E-mail address: dykhovychnyi@matan.kpi.ua

E-mail address: dudko@matan.kpi.ua

18 LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS



THE RATE OF WEAK CONVERGENCE OF THE

𝑁-POINT MOTIONS OF HARRIS FLOWS

V. V. FOMICHOV

Let {𝑥(𝑢, 𝑡), 𝑢 ∈ R, 𝑡 > 0} be a Harris flow with covariance function
Γ, which has compact support. If the function Γ is smooth enough, this
Harris flow can be represented as a flow of solutions of some stochastic
differential equation. For this case it was shown in [1] that when the
diameter 𝑑(Γ) of the support of the function Γ tends to zero the 𝑛-point
motions of the Harris flow converge weakly to the 𝑛-point motions of
the Arratia flow {𝑥0(𝑢, 𝑡), 𝑢 ∈ R, 𝑡 > 0} (recall that the Arratia flow
is a Harris flow with covariance function 1I{0}). In our talk we discuss
the rate of this convergence.

For a complete separable metric space (𝑋, 𝑑) let ℳ1(𝑋) denote
the space of all Borel probability measures on 𝑋 having a finite first
moment endowed with the standard Wasserstein metric 𝑊1. It is well
known that (ℳ1(𝑋),𝑊1) is also a complete separable metric space
(see, for instance, [3, Chapter 6]).

Fix an arbitrary measure 𝜇 ∈ ℳ1(R) and let 𝜆 and 𝜆0 denote the
images of 𝜇 under the action of the random mappings 𝑥(·, 1) : R → R
and 𝑥0(·, 1) : R → R respectively. It can be easily checked that 𝜆 and
𝜆0 are random elements in the space ℳ1(R), and so we can consider
their distributions Λ and Λ0 in this space. Note that Λ and Λ0 are
elements of the space ℳ1(ℳ1(R)).

Theorem. Let {𝑥(𝑢, 𝑡), 𝑢 ∈ R, 𝑡 > 0} be a Harris flow with covari-
ance function Γ, which has compact support, and {𝑥0(𝑢, 𝑡), 𝑢 ∈ R, 𝑡 >
0} be the Arratia flow. Assume that

supp 𝜇 ⊂ [0; 1]

and

𝑑(Γ) <
1

100
.

Then

𝑊1(Λ,Λ0) 6 𝐶 · 𝑑(Γ)1/22,

where the constant 𝐶 > 0 does not depend on 𝜇 and Γ.
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This talk is based on the results of joint work with Prof. A. A. Do-
rogovtsev, which are going to be published in [2].
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TEST FOR CHECKING HYPOTHESIS ON

EXPECTATION AND COVARIANCE FUNCTION OF

A RANDOM SEQUENCE

T. O. IANEVYCH AND YU. V. KOZACHENKO

Let us consider the stationary sequence {γ(n), n ≥ 1} for which
Eγ(n) = a is its expectation and E(γ(n) − a)(γ(n + m) − a) = B(m),
m ≥ 0 is its covariance function. Hereinafter we’ll consider stationarity
in a strict sense.

We assume that we have N + M (N,M > 0) consecutive observa-
tions of this random sequence. Let us consider the estimators for the
expectation and covariance function as follows:

âN (m) =
1

N

N∑

n=1

γ(n+m), 0 ≤ m ≤M − 1,

B̂N (m) =
1

N

N∑

n=1

(γ(n)− âN (0))(γ(n+m)− âN (m)).

For every estimator above we can evaluate the quantities (0 ≤ m ≤
M − 1)

EaN (m) := E(âN (m)− a)2 =
1

N2

N∑

n=1

N∑

k=1

B(n− k) = rN (0), ; (1)

EBN (m) := EB̂N (m) = B(m)− 1

N2

N∑

n=1

N∑

k=1

B(m− (n− k)) = (2)

= B(m)− rN (m), (3)

So, the following random variables are square Gaussian (see, for
example, [1]):

ξaN (m) := (âN (m)− a)2 − EaN (m) = (âN (m)− a)2 − rN (0), (4)

ξBN (m) := B̂N (m)−EBN (m) = B̂N (m)−B(m)+rN (m), 0 ≤ m ≤M−1.
(5)

Let us define the vectors

~ξN (m)T = (ξaN (m), ξBN (m)), 0 ≤ m ≤M − 1. (6)
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For any semi-definite matrix Bm = (bij(m))i,j=1,2 the random vari-
ables

ηN (m) := ~ξN (m)TBm
~ξN (m) (7)

are actually the quadratic forms of square Gaussian random variables.

Example. If bij =

{
1, i = j;
0, i 6= j.

(that is, B is the identity matrix

of order 2), then ηN (m) = (ξaN (m))2 + (ξBN (m))2 and EηN (m) =
(EξaN (m))2 + (EξBN (m))2.

If we consider the particular case when Bm = I2 in the relations
(1)-(7), then we can construct the following goodness-of-fit test.

Criterion. Let the null hypothesisH0 state that for non-centered Gauss-
ian stationary sequence {γ(n), n ≥ 1}, the expectation a = a0 and its
covariance function B(m) = B0(m), m ≥ 0. And the alternative Ha

imply the opposite statement. The random variables ηN (m) are as
determined in (1)-(7) with Bm = I2.

If for significance level α, some fixed p ≥ 1 and M < N (M,N ∈ N)


M−1∑

m=0



√

(âN (m)−a)4
2 + (B̂N (m)−B(m))2

EηN (m)



p

1/p

> εα,

H0 should be rejected and accepted otherwise.
Here εα is a critical value that can be found from the equation

U
(
εα−
√
2AN

M1/p

)
= α, with AN :=

[∑M−1
m=0

(
(rN (0))2+(rN (m))2

EηN (m)

)p/2]1/p

and taking into account the restriction εα >
√

2AN+pM
1
p

(
1 +

√
1 + 2

p

)
.
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LOCAL UNIVERSALITY FOR REAL ROOTS OF

RANDOM TRIGONOMETRIC POLYNOMIALS

A. IKSANOV AND A. MARYNYCH

We are interested in random trigonometric polynomials 𝑋𝑛 : R → R
of the form

𝑋𝑛(𝑡) =

𝑛∑︁

𝑘=1

(𝜉𝑘 sin(𝑘𝑡) + 𝜂𝑘 cos(𝑘𝑡)) ,

where the coefficients 𝜉1, 𝜂1, 𝜉2, 𝜂2, . . . are real random variables. In a
recent paper, Azäıs et al. [1] conjectured that if 𝜉1, 𝜂1, 𝜉2, 𝜂2, . . . are
independent identically distributed (i.i.d.) with zero mean and finite
variance, then the number of real zeros of 𝑋𝑛 in the interval [𝑎/𝑛, 𝑏/𝑛]
converges in distribution (without normalization) to the number of ze-
ros in the interval [𝑎, 𝑏] of a stationary Gaussian process 𝑍 := (𝑍(𝑡))𝑡∈R
with zero mean and

Cov(𝑍(𝑡), 𝑍(𝑠)) = sinc(𝑡− 𝑠), 𝑡, 𝑠 ∈ R,

where

sinc 𝑡 =

{︃
(sin 𝑡)/𝑡, if 𝑡 ̸= 0,

1, if 𝑡 = 0.

The limit distribution does not depend on the distribution of 𝜉1, a phe-
nomenon referred to as local universality. Azäıs et al. [1] proved their
conjecture assuming that 𝜉1 has an infinitely smooth density that sat-
isfies certain integrability conditions. However, as they remarked, even
the case of the Rademacher distribution P{𝜉1 = ±1} = 1/2 remained
open. We prove the conjecture of [1] in full generality. Moreover, we
also establish similar local universality results for the centered random
vectors (𝜉𝑘, 𝜂𝑘) having an arbitrary covariance matrix or belonging to
the domain of attraction of a two-dimensional 𝛼-stable law.

The talk is based on a recent joint work [2] with Z. Kabluchko
(Münster, Germany).
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LIMIT THEOREMS FOR MULTIDIMENSIONAL

RENEWAL SETS

A. ILIENKO

We are interested in the geometry of renewal sets constructed from
partial sums of i.i.d. random variables with multidimensional indices.

Let
(︀
𝜉m,m ∈ N𝑑

)︀
be a multi-indexed family of i.i.d. and a.s. non-

negative random variables with finite mean 𝜇 > 0. Denote by 𝑆n,
n ∈ N𝑑, their partial sums:

𝑆n =
∑︁

m≤n

𝜉m,

and by ℳ𝑡, 𝑡 > 0, the corresponding renewal sets:

ℳ𝑡 = {n ∈ N𝑑 : 𝑆n ≤ 𝑡}.
In the recent monograph by O. Klesov [1], a number of a.s. limit

theorems for the renewal process 𝑁(𝑡) = cardℳ𝑡 are derived. So,
these results answer the question of “how large” are ℳ𝑡. On the
contrary, we study the location and the shape of ℳ𝑡.

Consider the “subhyperbolic” set

ℋ =

{︂
x ∈ R𝑑

+ :

𝑑∏︁

𝑖=1

𝑥𝑖 ≤ 𝜇−1

}︂
.

We show that the rescaled sets 𝑡−1/𝑑ℳ𝑡 converge (in a sense to be
specified) towards ℋ as 𝑡 → ∞. The rate of convergence (in the form
of the Marcinkiewicz-Zygmund strong law of large numbers) and the
law of iterated logarithm are studied as well.

The talk is based on joint work with I. Molchanov (Bern, Switzer-
land).

References

[1] Klesov O. Limit Theorems for Multi-Indexed Sums of Random Variables. —
Springer, 2014. — 483 p.

Department of Mathematical Analysis and Probability Theory,

National Technical University of Ukraine “Kyiv Polytechnic Institute”,
37 Peremogy Avenue, 03056 Kyiv, Ukraine

E-mail address: ilienko@matan.kpi.ua

LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS

25



A NOTE ON THE

KOLMOGOROV-MARCINKIEWICZ-ZYGMUND TYPE

SLLN FOR ELEMENTS OF AUTOREGRESSION

SEQUENCES

M. K. ILIENKO

In the paper [1], the Kolmogorov-Marcinkiewicz-Zygmund type
SLLN for sums of i.i.d. random variables is studied in a way that
authors obtain necessary and sufficient conditions providing almost

sure convergence of the series
∑︀∞

𝑛=1
|𝑆𝑛|

𝑛1+1/𝑝 .
Got interested in the subject we obtain results of a sort for sums

whose terms are elements of random autoregression sequences by means
of technique developed by V. Buldygin and M. Runovska, [2]. Thus,
consider a zero-mean linear regression sequence of random variables
(𝜉𝑘) = (𝜉𝑘, 𝑘 ≥ 1):

𝜉1 = 𝜂1, 𝜉𝑘 = 𝛼𝑘𝜉𝑘−1 + 𝜂𝑘, 𝑘 ≥ 2, (1)

where (𝛼𝑘) is a nonrandom real sequence, and (𝜂𝑘) is a sequence of
independent symmetric random variables. Set 𝑆𝑛 =

∑︀𝑛
𝑘=1 𝜉𝑘, 𝑛 ≥ 1,

and study necessary and sufficient conditions providing almost sure
convergence of the series

∞∑︁

𝑛=1

𝑆𝑛

𝑛1+ 1
𝑝

, (2)

where 𝑝 > 0. Let us formulate one of the results.

Theorem 1. Let in (1) 𝛼𝑘 = 𝛼 = 𝑐𝑜𝑛𝑠𝑡, for any 𝑘 ≥ 2, and (𝜂𝑘) be
a sequence of independent copies of a symmetric random variable 𝜂.
The series (2) converges a.s. iff one of the following two conditions is
satisfied:
a) −1 ≤ 𝛼 < 1, 𝑝 > 0, and 𝐸|𝜂|𝑝 < ∞;

b) 𝛼 = 1, 0 < 𝑝 < 1, and 𝐸|𝜂| 𝑝
1−𝑝 < ∞.
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THE DETECTION OF HIDDEN PERIODICITIES IN

REGRESSION WITH LOCALLY TRANSFORMED

NOISE

A. V. IVANOV

The talk is devoted to the solution to the problem of detecting hid-
den periodicities in discrete time regression model with nonlinearly
locally transformed, possibly, strongly dependent Gaussian stationary
time series in the capacity of random noise. The results obtained gen-
eralize the correspondent results of the paper [1] for time continuous
observation model where one can find necessary references and discus-
sion.

To prove asymptotic normality of the joint least squares estimate (l.s.e.)
in Walker sense of amplitudes and angular frequencies of a sum of har-
monic oscillations we study general nonlinear regression and obtain a
general theorem on l.s.e. asymptotic normality using the CLT from
the paper [2]. Then asymptotic normality of the l.s.e. in trigonometric
regression follows from this theorem.
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ABSTRACT PRIME NUMBER THEOREMS FOR

ADDITIVE ARITHMETICAL SEMIGROUPS

E. KAYA

Let (𝐺, 𝜕) be an additive arithmetical semigroup. By definition, 𝐺
is a free commutative semigroup with identity element 1, generated by
a countable set 𝑃 of primes and admitting an integer valued degree
mapping 𝜕 : 𝐺 → N ∪ {0} with the properties

(i) 𝜕(1) = 0 and 𝜕(𝑝) > 0 for all 𝑝 ∈ 𝑃 ,
(ii) 𝜕(𝑎𝑏) = 𝜕(𝑎) + 𝜕(𝑏) for all 𝑎, 𝑏 ∈ 𝐺,

(iii) the total number 𝐺(𝑛) of elements 𝑎 ∈ 𝐺 of degree 𝜕(𝑎) = 𝑛
is finite for each 𝑛 ≥ 0.

Obviously, 𝐺(0) = 1 and 𝐺 is countable. Let

𝜋(𝑛) := # {𝑝 ∈ 𝑃 : 𝜕(𝑝) = 𝑛}
denote the total number of primes of degree 𝑛 in 𝐺. The asymptotic
behavior of 𝜋(𝑛), 𝑛 → ∞, was called “abstract prime number theo-
rem”.

In this talk, we prove abstract prime number theorems for additive
arithmetical semigroups.
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LAW OF LARGE NUMBERS FOR MARTINGALES

O. I. KLESOV

Let {𝑆𝑛} be a martingale with respect to the natural flow of 𝜎-
algebras. Chow [2] proved the following result.

Theorem 1. Let 𝑋𝑛 = 𝑆𝑛 − 𝑆𝑛−1 and {𝐶𝑘} be a nonincreasing se-
quence positive numbers. For 𝛼 ≥ 1 and 2𝛼 ≥ 𝛽 > 0, if there exists 𝑖0
such that for 𝑖 ≥ 𝑖0

E
[︀
|𝑆𝑖|2𝛼

]︀
≤ 𝐴E

[︃(︂ 𝑖∑︁

𝑘=1

𝑋2
𝑘

)︂𝛼
]︃
, (1)

𝑖𝛼−1𝐶2𝛼−𝛽
𝑖 ≤ 𝐴,

∞∑︁

𝑘=𝑖

𝐶2𝛼
𝑘 𝑘𝛼−2 ≤ 𝐴𝐶𝛽

𝑖 (2)

where 𝐴 is a constant, independent of 𝑖, and if
∞∑︁

𝑘=1

𝐶𝛽
𝑘E

[︀
|𝑋𝑘|2𝛼

]︀
< ∞, (3)

then lim𝐶𝑛𝑆𝑛 = 0 almost surely.

Later Burkholder [1] proved that (1) is always satisfied. We are
concerned with conditions (2) and (3) in the talk.

Some sufficient conditions for the strong law of large numbers for
martingales with continuous time are discussed similarly to the case
of discrete time (see [3]). A special attention is paid to the case of
solutions of stochastic differential equations.
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STRONG RANDOM OPERATORS GENERATED BY

STOCHASTIC FLOWS

I. A. KORENOVSKA

We consider a strong random operator (SRO) [1] 𝑇𝑡 in 𝐿2(R) that
describes shift of functions along Arratia flow [2] {𝑥(𝑢, 𝑡), 𝑢 ∈ R, 𝑡 ≥
0}, i.e. for fixed 𝑡 > 0

(𝑇𝑡𝑓)(𝑢) = 𝑓(𝑥(𝑢, 𝑡))

where 𝑓 ∈ 𝐿2(R), 𝑢 ∈ R.

Lemma 1. 𝑇𝑡 is not a bounded SRO [3] in 𝐿2(R).

The image of a compact set 𝐾 ⊂ 𝐿2(R) under a SRO in general is
not defined. For 𝑇𝑡(𝐾) to be well-defined and to be a random compact
it is sufficient to show that 𝑇𝑡 has a continuous modification on 𝐾.

Theorem 1. Let Φ be a subset of Sobolev space 𝑊 1
2 (R) and

sup
𝑓,𝑔∈Φ

∫︁

R
(𝑓 ′(𝑢) − 𝑔′(𝑢))2(|𝑢| + 1)3𝑑𝑢 < ∞.

Then 𝑇𝑡 has a continuous modification on Φ.

Necessary and sufficient conditions under which 𝑇𝑡 saves conver-
gence are presented.

Theorem 2. Let {𝑓𝑛}∞𝑛=1 ⊂ 𝐿2(R) be a sequence such that 𝑓𝑛 →
0, 𝑛 → ∞, in 𝐿2(R). If 𝑃{ lim

𝑛→∞
‖𝑇𝑡𝑓𝑛‖𝐿2(R) = 0 } = 1, then 𝑓𝑛 →

0, 𝑛 → ∞, a.e. under Lebesgue measure 𝜆 on R.

Theorem 3. Let {𝑓𝑛}∞𝑛=1 ⊂ 𝐿2(R) be a sequence for which the fol-
lowing conditions hold

(1) 𝑓𝑛
𝐿2(R)−−−−→
𝑛→∞

0 ;

(2) 𝑓𝑛 → 0, 𝑛 → ∞, a.e. under Lebesgue measure 𝜆 on R ;
(3) ∃𝐶 > 0 : ∀𝑛 ≥ 1 𝑠𝑢𝑝𝑝𝑓𝑛 ⊂ [−𝐶;𝐶] .

Then 𝑃{ lim
𝑛→∞

‖𝑇𝑡𝑓𝑛‖𝐿2(R) = 0 } = 1 .

Convergence almost everywhere isn’t sufficient to save the conver-
gence under 𝑇𝑡.

LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS

31



Example 1. Let fix 𝑡 > 0 and consider sequences {𝑐𝑛}∞𝑛=0, {𝑎𝑛}∞𝑛=0

such that 𝑐0 = 1, 𝑎0 = 0 and

𝑐𝑛 = (ln𝑛)
1
4 , 𝑎𝑛 = 𝑎𝑛−1 + 1 + 2𝑛(𝑡 ln 2)

1
2 ∀𝑛 ∈ N.

Then for every 𝛿 ∈ (0; 2
√
𝑡) and function 𝑓𝑛 = 1

𝑐𝑛
1I(𝑎𝑛;𝑎𝑛+1] the fol-

lowing statement holds

𝑃{ lim𝑛→∞‖𝑇𝑡𝑓𝑛‖2𝐿2(R) ≥ 𝛿 } = 1.
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HYPOTHESIS TESTING OF THE DRIFT PARAMETER

SIGN FOR FRACTIONAL ORNSTEIN–UHLENBECK

PROCESS

A. KUKUSH, Y. MISHURA, AND K. RALCHENKO

We consider the Langevin equation 𝑑𝑋𝑡 = 𝜃𝑋𝑡𝑑𝑡+𝑑𝐵𝐻
𝑡 , which con-

tains an unknown drift parameter 𝜃, and where the noise is modeled as
fractional Brownian motion with known Hurst index 𝐻. The solution
corresponds to the fractional Ornstein–Uhlenbeck process. We propose
comparatively simple test for testing the null hypothesis 𝐻0 : 𝜃 ≤ 0
against the alternative 𝐻1 : 𝜃 > 0 and prove its consistency. Contrary
to the previous works ([1, 2, 3]), our approach is applicable for all
𝐻 ∈ (0, 1). The test is based on the observations of the process 𝑋 at
two points: 0 and 𝑇 . The distribution of the test statistic is computed
explicitly, and the power of test can be found numerically for any given
simple alternative. Also we consider the hypothesis testing 𝐻0 : 𝜃 ≥ 𝜃0
against 𝐻1 : 𝜃 ≤ 0, where 𝜃0 ∈ (0, 1) is some fixed number.
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GOODNESS-OF-FIT TEST IN A MULTIVARIATE

ERRORS-IN-VARIABLES MODEL

A. G. KUKUSH AND YA. V. TSAREGORODTSEV

A homoscedastic multivariable functional errors-in-variables model
𝐴𝑋 ≈ 𝐵 is considered, where the data matrices 𝐴 and 𝐵 are observed
with additive errors and a matrix parameter 𝑋 is to be estimated. The
errors are uncorrelated, with unknown variance and vanishing third
moments, and error distribution in a row of data matrix [𝐴𝐵] does not
depend on the row. The number 𝑚 of rows in 𝐴 and 𝐵 is increasing
while the size of 𝑋 is fixed. A goodness-of-fit test is constructed based
on the total least squares (TLS) estimator. Under null hypothesis, the
proposed test is asymptotically chi-squared, with certain number of de-
grees of freedom. Local alternatives are introduced, where the output
matrix 𝐵 is disturbed with nonlinear term proportional to 𝑚− 1

2 . Un-
der the local alternatives, the test statistic has asymptotic noncentral
chi-squared distribution, with the same number of degrees of freedom.
The larger the noncentrality parameter the larger power of the test. In
the presence of intercept term, the test fails and has to be modified.

The condition about uncorrelated errors with equal variances can be
violated, moreover some columns of data matrix can be free of errors.
For such heteroscedastic model, the elementwise-weighted total least
squares (EWTLS) estimator replaces the TLS estimator. The EWTLS
estimator is consistent [1], its asymptotic normality can be shown like
in [2], and the corresponding goodness-of-fit test can be elaborated.
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FRACTIONAL POISSON FIELDS AND MARTINGALES

N. LEONENKO

We present new properties for the Fractional Poisson process [2,3],
Fractional non-homogeneous Poisson process [6] and the Fractional
Poisson fields on the plane [4]. A martingale characterization for Frac-
tional Poisson processes is given. We extend this result to Fractional
Poisson fields, obtaining some other characterizations. The fractional
differential equations are studied. The covariance structure is given.
Finally, we give some simulations of the Fractional Poisson fields on
the plane.

This is a joint work with G. Aletti (University of Milan, Italy) and
E. Merzbach (Bar Ilan University, Israel).
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THE AUTO- AND CROSS-DISTANCE CORRELATION

FUNCTIONS OF A MULTIVARIATE TIME SERIES AND

THEIR SAMPLE VERSIONS

T. MIKOSCH

This is joint work with R.A. Davis, P. Wan (Columbia Statistics),
and M. Matsui (Nagoya). Feuerverger (1993) and Székely, Rizzo and
Bakirov (2007) introduced the notion of distance covariance/correlation
as a measure of independence/dependence between two vectors of ar-
bitrary dimension and provided limit theory for the sample versions
based on an iid sequence. The main idea is to use characteristic func-
tions to test for independence between vectors, using the standard
property that the characteristic function of two independent vectors
factorizes. Distance covariance is a weighted version of the squared
distance between the joint characteristic function of the vectors and
the product of their marginal characteristic functions. Similar ideas
have been used in the literature for various purposes: goodnes-of-fit
tests, change point detection, testing for independence of variables,...
; see work by Meintanis, Huškova, and many others. In contrast to
Székely et al. who use a weight function which is infinite on the axes,
the latter authors choose probability density weights. Z. Zhou (2012)
extended distance correlation to time series models for testing depen-
dence/independence in a time series at a given lag. He assumed a
“physical dependence measure”.

In our work we consider the distance covariance/correlation for gen-
eral weight measures, finite or infinite on the axes or at the origin.
These include the choice of Székely et al., probability and various Lévy
measures. The sample versions of distance covariance/correlation are
obtained by replacing the characteristic functions by their sample ver-
sions. We show consistency under ergodicity and weak convergence to
an unfamiliar limit distribution of the scaled auto- and cross-distance
covariance/correlation functions under strong mixing. We also study
the auto-distance correlation function of the residual process of an
autoregressive process. The limit theory is distinct from the corre-
sponding theory of an iid noise process. We illustrate the theory for
simulated and real data examples.

University of Copenhagen, Denmark
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CONVEX HULLS OF LÉVY PROCESSES

I. MOLCHANOV AND F. WESPI

A number of existing results concern convex hulls of stochastic pro-
cesses, especially the Brownian motion and random walks, see [1, 5].
In contrary, considerably less is known about convex hulls of general
Lévy processes with the exception of some results for symmetric 𝛼-
stable Lévy processes in R𝑑 with 𝛼 ∈ (1, 2], see [2].

Let 𝑋𝑡, 𝑡 ≥ 0, be a Lévy process with values in R𝑑. We study
properties of the random compact set

𝑍𝑠 = co{𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑠}

which is the closed convex hull of the path of the process up to time 𝑡.
The most important geometric functionals of a convex body 𝐾 in

R𝑑 are intrinsic volumes 𝑉𝑗(𝐾), 𝑗 = 0, 1, . . . , 𝑑, see [4]. In dimension
𝑑 = 2, 𝑉2(𝐾) is the area and 2𝑉1(𝐾) is the perimeter.

We obtain a criterion for the existence of the moments of 𝑉𝑗(𝑍𝑠)
that generalise the result of [2] for Lévy processes with independent
coordinates. Using approximation with random walks and the results
of [5], we obtain an explicit formula for all expected intrinsic volumes
if 𝑋𝑡 is a symmetric stable Lévy process generalising this result for the
Brownian motion from [1].

It is shown that 𝑋𝑠 almost surely belongs to the interior of 𝑍𝑠 for
all 𝑠. Finally it is shown that the normalised convex hulls converge to
the convex hulls of a symmetric stable Lévy process.
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PROBABILITIES OF LARGE DEVIATIONS OF

RANDOM NOISE COVARIANCE FUNCTION

ESTIMATOR IN NONLINEAR REGRESSION MODEL

K. K. MOSKVYCHOVA

Consider a model of observations 𝑋(𝑡) = 𝑔(𝑡, 𝜃) + 𝜉(𝑡), 𝑡 ∈ [0,∞),
where 𝑔 : [0,∞) × Θ → R is continuous function depending on un-
known parameter 𝜃 = (𝜃1, ..., 𝜃𝑞) ∈ Θ ⊂ R𝑞, Θ is bounded open convex
set, 𝜉 = {𝜉(𝑡), 𝑡 ∈ R} is a real mean square and almost sure continu-
ous stationary Gaussian process with zero mean and positive bounded
spectral density 𝑓 = {𝑓(𝜆), 𝜆 ∈ R}.

Any random vector ̂︀𝜃𝑇 = (̂︀𝜃1𝑇 , . . . ̂︀𝜃𝑞𝑇 ) ∈ Θ satisfying relation

𝑄𝑇 (̂︀𝜃𝑇 ) = min
𝜏∈Θ

𝑇∫︀
0

[𝑋(𝑡) − 𝑔(𝑡, 𝜏)]2𝑑𝑡 is said to be the least squares esti-

mate of unknown parameter 𝜃 ∈ Θ on observation interval [0,T].
As estimator of covariance function 𝐵(𝑡), 𝑡 ∈ R of the process 𝜉 we

choose correlogram 𝐵𝑇 (𝑧, ̂︀𝜃𝑇 ) = 𝑇−1
𝑇∫︀
0

(𝑋(𝑡+ 𝑧)− 𝑔(𝑡+ 𝑧, ̂︀𝜃𝑇 ))(𝑋(𝑡)−

𝑔(𝑡, ̂︀𝜃𝑇 ))𝑑𝑡, 𝑧 ∈ [0, 𝐻]. We find sufficient conditions under which exist
constants 𝐴0 and 𝑏0 such that for 𝑇 > 𝑇0, 𝑅 > 𝑅0

𝑃

{︃
𝑇 1/2 sup

𝑧∈[0,𝐻]

|B𝑇 (𝑧, 𝜃𝑇 ) − B(𝑧)| ≥ 𝑅

}︃
≤ 𝐴0 exp{−𝑏0𝑅} (1 + 𝛾(𝑇,𝑅)) ,

where lim
𝑇→∞,𝑅→∞

𝛾(𝑇,𝑅) = 0.

In particular, the result significantly sharpens the results obtained
in [1].
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ASYMPTOTIC NORMALITY OF REGRESSION

PARAMETER ESTIMATOR IN THE CASE OF

LONG-RANGE DEPENDENT REGRESSORS AND

NOISE WITH SEASONAL EFFECTS

I. V. ORLOVSKYI

Consider a regression model

𝑋𝑗 =

𝑞∑︁

𝑖=1

𝜃𝑖𝑧𝑖𝑗 + 𝜀𝑗 , 𝑧𝑖𝑗 = 𝑎𝑖𝑗 + 𝑦𝑖𝑗 , 𝑗 = 1, 𝑁, (1)

where 𝜃 = (𝜃1, ..., 𝜃𝑞) ∈ R𝑞 is a vector of unknown parameters, {𝑎𝑖𝑗 , 𝑗 ∈
N} ⊂ R, 𝑖 = 1, 𝑞, are some non random sequences, 𝑦𝑖𝑗 , 𝑗 ∈ Z, 𝑖 = 1, 𝑞,
and 𝜀𝑗 , 𝑗 ∈ Z, are independent real stationary Gaussian sequences with
zero means that satisfy long-range dependence condition with seasonal
effects i.e. their covariance functions have the form 𝐵𝑖(𝑛) = 𝐸𝑦𝑖𝑛𝑦𝑖0 =
cos𝜒𝑖𝑛 ·𝐿𝑖(|𝑛|)|𝑛|−𝛼𝑖 , 𝐵(𝑛) = 𝐸𝜀𝑛𝜀0 = cos𝜒0𝑛 ·𝐿0(|𝑛|)|𝑛|−𝛼0 , 𝑛 ∈ Z,
where 𝐿𝑖(𝑡), 𝑡 > 0, are slowly varying at infinity functions, 𝐵𝑖(0) =
𝜎2
𝑖 > 0, 𝛼𝑖 ∈

(︀
1
2 , 1

)︀
, 𝜒𝑖 ∈ [0, 𝜋), 𝑖 = 0, 𝑞.

Definition 1. Least squares estimator of unknown parameter 𝜃 ob-
tained from observations

{︀
𝑋𝑗 , 𝑧𝑖𝑗 , 𝑖 = 1, 𝑞, 𝑗 = 1, 𝑁

}︀
of the type (1)

is said to be any random vector ̂︀𝜃𝑁 = ̂︀𝜃𝑁
(︀
𝑋𝑗 , 𝑧𝑖𝑗 , 𝑖 = 1, 𝑞, 𝑗 = 1, 𝑁

)︀

having property 𝑆𝑁 (̂︀𝜃𝑁 ) = inf
𝜏∈R𝑞

𝑆𝑁 (𝜏), 𝑆𝑁 (𝜏) =
𝑁∑︀
𝑗=1

[︂
𝑋𝑗 −

𝑞∑︀
𝑖=1

𝜏𝑖𝑧𝑖𝑗

]︂2
.

Sufficient conditions of asymptotic normality of least squares esti-
mator of unknown parameter 𝜃 of model (1) are presented in the talk.
Statements obtained generalize some results derived in the book [1].
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ON SOME MARKOV PROCESSES RELATED TO

A SYMMETRIC STABLE PROCESS

M. M. OSYPCHUK AND M. I. PORTENKO

For fixed parameters 𝑐 > 0 and 𝛼 ∈ (1, 2] we put

𝑔(𝑡, 𝑥, 𝑦) =
1

𝜋

∞∫︁

0

𝑒−𝑐𝑡𝜉𝛼 cos 𝜉(𝑦 − 𝑥) 𝑑𝜉, 𝑡 > 0, 𝑥 ∈ R, 𝑦 ∈ R. (1)

There exists a standard Markov process (𝑥(𝑡),P𝑥) on (R,ℬ(R))
(in Dynkin’s sense) such that

P𝑥({𝑥(𝑡) ∈ Γ}) =

∫︁

Γ

𝑔(𝑡, 𝑥, 𝑦) 𝑑𝑦, 𝑡 > 0, 𝑥 ∈ R, Γ ∈ ℬ(R)

Introduce the following stopping times

𝜏0 = inf{𝑠 ≥ 0 : 𝑥(𝑠) = 0} and 𝜎 = inf{𝑠 ≥ 0 : 𝑥(𝑠)𝑥(0) ≤ 0}
and consider the function

𝑔*(𝑡, 𝑥, 𝑦) = 𝑔(𝑡, 𝑥, 𝑦) − 𝑔(𝑡,−|𝑥|, |𝑦|)
defined for 𝑡 > 0, 𝑥 ∈ R0 and 𝑦 ∈ R0 (R0 = R ∖ {0}).

If 𝛼 = 2, then P𝑥({𝜏0 = 𝜎}) = 1 for all 𝑥 ∈ R and

P𝑥({𝑥(𝑡) ∈ Γ} ∩ {𝜏0 > 𝑡}) =

∫︁

Γ

𝑔*(𝑡, 𝑥, 𝑦) 𝑑𝑦 (2)

for 𝑡 > 0, 𝑥 ∈ R0, Γ ∈ ℬ(R0).
If 1 < 𝛼 < 2, then P𝑥({𝜏0 > 𝜎}) = 1 for 𝑥 ∈ R0 and (2) is not true.
Denote by (𝑥0(𝑡),P0

𝑥) and (𝑥*(𝑡),P*
𝑥) the Markov processes on (R0,

ℬ(R0)) whose transition probabilities are given, respectively, by the
left-hand and right-hand sides of (2). We investigate some properties
of these processes, in particular, we find out their potential operators,
the distribution functions of 𝜏0 and 𝜏* (this is the life time of the
process (𝑥*(𝑡))𝑡≥0) and show that the distribution functions of 𝜏* and
𝜎 are different. In the case of 𝛼 = 2 the functions 𝑔 and 𝑔* turn out to
be connected by the Feynman-Kac transformation in some weak sense
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and they do not in the case of 1 < 𝛼 < 2. In the latter one, the process
(𝑥*(𝑡))𝑡≥0 is shown to be a solution to a martingale problem.
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INTEGRAL REPRESENTATIONS OF KARAMATA’S

TYPE FOR ORV FUNCTIONS WITH

NONDEGENERATE GROUPS OF REGULAR POINTS

V. V. PAVLENKOV

Let FM+ be the set of positive and measurable functions 𝑓 =
(𝑓(𝑥), 𝑥 ≥ 𝐴) for some 𝐴 > 0. For given 𝑓 ∈ FM+ introduce the
limit functions

𝑓*(𝜆) = lim sup
𝑥→∞

𝑓(𝜆𝑥)

𝑓(𝑥)
and 𝑓*(𝜆) = lim inf

𝑥→∞
𝑓(𝜆𝑥)

𝑓(𝑥)
, 𝜆 > 0,

witch take values in [0,∞].
A number 𝜆 > 0 is called a regular point of the function 𝑓 , denoted

𝜆 ∈ G𝑟(𝑓), if
𝑓*(𝜆) = 𝑓*(𝜆) ∈ (0,∞).

If G𝑟(𝑓) = R+, then 𝑓 is called regularly varying (RV) function. If
𝑓*(𝜆) < ∞, 𝜆 > 0, then 𝑓 is called O-regularly varying (ORV) function.

The set G𝑟(𝑓) of regular points of 𝑓 is a multiplicative subgroup of
R+ with 1 ∈ G𝑟(𝑓). If G𝑟(𝑓) = {1}, then G𝑟(𝑓) is called degenerate,
otherwise nondegenerate. ORV functions with nondegenerate group of
regular points were introduced and studied by Buldygin, Klesov and
Steinebach.

Karamata’s theorem on the integral representation of RV function
is well known. The similar result for ORV function is also known.
Integral representations of Karamata’s type for ORV functions with
nondegenerate groups of regular points are considered in the talk.
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ON A SELECTION PROBLEM FOR SMALL NOISE

PERTURBATION OF NON-LIPSCHITZ O.D.E.

A. YU. PILIPENKO

Consider an equation

𝑋𝜀(𝑡) = 𝑥 +

∫︁ 𝑡

0

𝑎(𝑠,𝑋𝜀(𝑠))𝑑𝑠 + 𝜀𝐵(𝑡),

where 𝐵(𝑡), 𝑡 ≥ 0 is a multidimensional Wiener process, the function
𝑎 = 𝑎(𝑡, 𝑥) : [0,∞) × 𝑅𝑑 satisfies Lipschitz condition in 𝑥 everywhere
except of the hyperplane 𝑅𝑑−1 × {0}.

We identify limits of {𝑋𝜀} distributions as 𝜀 → 0. It appears that
the behavior of the limit process depends on signs of the normal compo-
nent of the drift at the upper and lower half-spaces in a neighborhood
of the hyperplane, all cases are considered.

We also discuss limits of the sequence (𝑑 = 1)

𝑌 𝜀(𝑡) =

∫︁ 𝑡

0

(𝑐+1𝑌 𝜀(𝑠)>0 − 𝑐−1𝑌 𝜀(𝑠)<0)|𝑌 𝜀(𝑠)|𝛽𝑑𝑠 + 𝜀𝐵𝛼(𝑡), 𝑡 ≥ 0,

where 𝛽 < 1, 𝑐± > 0, 𝐵𝛼 is an 𝛼 self-similar process.
It appears that the limit of {𝑌 𝜀} as 𝜀 → 0 is closely related with

the limit behavior of a solution to the equation

𝑌 (𝑡) =

∫︁ 𝑡

0

(𝑐+1𝑌 (𝑠)>0 − 𝑐−1𝑌 (𝑠)<0)|𝑌 (𝑠)|𝛽𝑑𝑠 + 𝐵𝛼(𝑡), 𝑡 ≥ 0,

as 𝑡 → ∞.
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REPRESENTATION OF GAUSSIAN FIELD BY

CHENTSOV RANDOM FIELD

N. V. PROKHORENKO

Let us consider Gaussian field with zero expectation and following
covariance function:

𝑅(𝑠, 𝑡) =
𝑛∏︁

𝑖=1

𝑢𝑖(min{𝑠𝑖, 𝑡𝑖})𝑣𝑖(max{𝑠𝑖, 𝑡𝑖}), (1)

𝑠 = (𝑠1, . . . , 𝑠𝑛), 𝑡 = (𝑡1, . . . , 𝑡𝑛).
We will find the representation of this fields via Chentsov random

field. The received outcomes can be used for research of functionals of
the Gaussian fields. For example, to find the probability that Gaussian
field crossing certain surface.

Theorem 1. Let 𝑌 (𝑡), 𝑡 = (𝑡1, . . . , 𝑡𝑛), be any Gaussian field with
𝐸[𝑌 (𝑡)] = 0 and covariance function (1) for all 𝑠, 𝑡 ∈ [0,∞)𝑛. Let
the functions 𝑢𝑖

𝑣𝑖
, 𝑖 = 1, 𝑘, and 𝑣𝑖

𝑢𝑖
, 𝑖 = 𝑘+1, 𝑛, have inverse functions

𝑎𝑖 =
(︀
𝑢𝑖

𝑣𝑖

)︀−1
and 𝑏𝑖 =

(︀
𝑣𝑖
𝑢𝑖

)︀−1
respectively.

Assume that 𝜙𝑖(𝑡𝑖), 𝑖 = 1, 𝑘, are continuous and strictly increasing
functions, 𝜙𝑖(𝑡𝑖), 𝑖 = 𝑘+1, 𝑛, are continuous and strictly decreasing
functions, 𝜂𝑖(𝑡𝑖), 𝑖 = 1, 𝑛, are continuous functions. Gaussian field
𝑌 (𝜙(𝑡))
𝜂(𝑡) , where 𝜙(𝑡) = (𝜙1(𝑡1), . . . , 𝜙𝑛(𝑡𝑛)), 𝜂(𝑡) =

∏︀𝑛
𝑖=1 𝜂𝑖(𝑡𝑖), and

Chentsov random field are stochastically equivalent if and only if:

𝜙𝑖(𝑡𝑖) = 𝑎𝑖(𝑐
2
𝑖 𝑡𝑖), 𝜂𝑖(𝑡𝑖) = 𝑐𝑖𝑣𝑖

(︀
𝑎𝑖(𝑐

2
𝑖 𝑡𝑖)

)︀
, 𝑖 = 1, 𝑘,

𝜙𝑗(𝑡𝑗) = 𝑏𝑗(𝑐
2
𝑗 𝑡𝑗), 𝜂𝑗(𝑡𝑗) = 𝑐𝑗𝑢𝑗

(︀
𝑏𝑗(𝑐

2
𝑗 𝑡𝑗)

)︀
, 𝑗 = 𝑘+1, 𝑛,

where 𝑐 = (𝑐1, . . . , 𝑐𝑛) ̸= 0.
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SMALL RANDOM PERTURBATIONS OF STOCHASTIC

DIFFERENTIAL EQUATIONS WITH POWER

COEFFICIENTS

YU. E. PRYKHODKO

Bafico and Baldi [1] considered differential equation

𝑑𝑋(𝑡) = 𝑎(𝑋(𝑡)) 𝑑𝑡,

where coefficient 𝑎 does not satisfy the Lipschitz condition at 0. They
suggested to consider small random perturbations of this equations,
i.e. stochastic differential equation

𝑑𝑋𝜀(𝑡) = 𝑎(𝑋𝜀(𝑡)) 𝑑𝑡 + 𝜀 𝑑𝑊 (𝑡),

for which existence and uniqueness of solutions is known; and studied
the limit behavior of 𝑋𝜀 as 𝜀 → 0.

We will generalize the result of [1] to the case of SDE

𝑑𝑋𝜀(𝑡) = 𝑎(𝑋𝜀(𝑡)) 𝑑𝑡 +
(︀
𝜎(𝑋𝜀(𝑡)) + 𝜀

)︀
𝑑𝑊 (𝑡)

with power coefficients 𝑎(𝑥) = 𝑎±|𝑥|𝛼 sign𝑥 and 𝜎(𝑥) = 𝑏±|𝑥|𝛽 ,
where 𝑎± > 0, 𝑏± ≥ 0, 𝛼, 𝛽 > 0. To study the limit behavior of 𝑋𝜀 as
𝜀 → 0 one can use the general methods developed in [2] and [3].

It is then proved [4] that the sequence of processes {𝑋𝜀(·)} is weakly
convergent as 𝜀 → 0 in the space of continuous functions.
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KANTOROVICH-RUBINSTEIN DISTANCE ON THE

ABSTRACT WIENER SPACE

G. V. RIABOV

Let (𝑋, ‖ · ‖) be a separable Banach space equipped with a centered
Gaussian measure 𝜇. There exists a unique separable Hilbert space
(𝐻, | · |), continuously embedded into 𝑋, such that [1]∫︁

𝑋

𝑒𝑖𝑙(𝑥)𝜇(𝑑𝑥) = 𝑒−
1
2 |𝑙|2 , 𝑙 ∈ 𝑋*.

The space ℳ(𝑋) of all Borel probability measures on 𝑋 is equipped
with the Kantorovich-Rubinstein distance:

𝑊 (𝜈1, 𝜈2) = inf
𝜅

∫︁

𝑋

∫︁

𝑋

‖𝑥1 − 𝑥2‖𝜅(𝑑𝑥1, 𝑑𝑥2),

where the infimum is taken over all measures 𝜅 on 𝑋2 with marginals
𝜈1 and 𝜈2. In the main theorem a representation of the distance 𝑊 in
terms of stochastic integral operator 𝐼 ([1]) is given.

Theorem 1. Let 𝜈1, 𝜈2 ∈ ℳ(𝑋) be such that

𝜈2 − 𝜈1 ≪ 𝜇,
𝑑(𝜈2 − 𝜈1)

𝑑𝜇
∈ 𝐿2(𝑋,𝜇).

Then

𝑊 (𝜈1, 𝜈2) = inf
𝑢:𝐼𝑢=

𝑑(𝜈2−𝜈1)
𝑑𝜇

∫︁

𝑋

|𝑢(𝑥)|𝜇(𝑑𝑥).

This theorem generalizes the result of [2], where an upper bound on
𝑊 (𝜈, 𝜇) was obtained.
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ASYMPTOTIC NORMALITY OF THE LEAST MODULE

ESTIMATOR IN REGRESSION MODEL WITH

STRONGLY DEPENDENT RANDOM NOISE

I. N. SAVYCH

Consider a regression model 𝑋(𝑡) = 𝑔(𝑡, 𝜃) + 𝜉(𝑡), 𝑡 ≥ 0, where
𝑔(𝑡, 𝜃) ∈ 𝐶 ([0,+∞) × Θ𝑐), Θ ⊂ R𝑞, is an open bounded set, 𝜉(𝑡), 𝑡 ∈
R, is a measurable stationary Gaussian process, E 𝜉(0) = 0, E 𝜉(𝑡)𝜉(0) =∑︀𝑟

𝑗=0 𝐴𝑗𝐵𝛼𝑗 ,𝜒𝑗 (𝑡), 𝑡 ∈ R, 𝑟 > 0, where 𝐴𝑗 > 0,
∑︀𝑟

𝑗=1 𝐴𝑗 = 1,

𝐵𝛼𝑗 ,𝜒𝑗
(𝑡) =

cos(𝜒𝑗𝑡)

(1+𝑡2)
𝛼𝑗
2

, 𝑗 = 0, 𝑟, 0 = 𝜒0 < 𝜒1 < ... < 𝜒𝑟 < +∞,

𝛼𝑗 ∈ (0, 1). Let Φ(𝑥) =
∫︀ 𝑥

−∞ 𝜙(𝑡)𝑑𝑡 be a distribution function of 𝜉(0),

where 𝜙(𝑡) = 𝑒−
𝑡2

2 /
√

2𝜋, 𝑡 ∈ R.
The least module estimator of parameter 𝜃 ∈ Θ is any random vector

𝜃𝑇 = 𝜃𝑇 (𝑋(𝑡), 𝑡 ∈ [0, 𝑇 ]) ∈ Θ𝑐 for which 𝑄𝑇 (𝜃𝑇 ) = min𝜏∈Θ𝑐 𝑄𝑇 (𝜏),

𝑄𝑇 (𝜏) = 1
2

∫︀ 𝑇

0
|𝑋(𝑡) − 𝑔(𝑡, 𝜏)| 𝑑𝑡.

Let 𝜇 be spectral measure of regression function 𝑔(𝑡, 𝜃), spectral
density 𝑓(𝜆), 𝜆 ∈ R, of 𝜉(𝑡) is 𝜇-admissible.

Denote by 𝑑2𝑖𝑇 (𝜃) =
∫︀ 𝑇

0

(︁
𝑔

′
𝜃𝑖

(𝑡, 𝜃)
)︁2

𝑑𝑡, 𝑑2𝑇 (𝜃) = 𝑑𝑖𝑎𝑔
(︀
𝑑2𝑖𝑇 (𝜃)

)︀𝑞
𝑖=1

.

The normed estimator 𝑑𝑇 (𝜃)(̂︀𝜃𝑇 − 𝜃) is asymptotically normal [1, 2]

𝑁(0,Γ), Γ = 2𝜋Λ
[︁∫︀

R

(︁
𝑓(𝜆) + Σ∞

𝑛=1
(2𝑛−1)!!

(2𝑛+1)(2𝑛)!!𝑓
*(2𝑛+1)(𝜆)

)︁
𝜇(𝑑𝜆, 𝜃)

]︁
Λ,

where Λ =
(︀∫︀

R 𝜇(𝑑𝜆, 𝜃)
)︀−1

, 𝑓*𝑗(𝜆) is the 𝑗−th convolution of spectral
density 𝑓(𝜆).
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STRONG LAWS FOR ARRAYS OF INDEPENDENT

RANDOM VARIABLES

U. STADTMÜLLER AND A. GUT

The present talk is devoted to complete convergence and the strong
law of large numbers under moment conditions near those of the law of
single logarithm (LSL) for i.i.d. arrays, where some recent papers [4, 3]
triggered our investigations. More precisely, we wish to investigate
possible limit theorems under moment conditions which are stronger
than 2𝑝 for any 𝑝 < 2, in which case we know that there is a.s. con-
vergence to 0, and weaker than 𝐸𝑋4/(log+ |𝑋|)2 < ∞ when a law
of single logarithm holds. Furthermore we will discuss some special
cases of weighted sums

∑︀𝑛
𝑘=0 𝑎𝑛𝑘𝑋𝑘 , in particular, Cesáro means of

small order 0 < 𝛼 ≤ 1 where 𝑎𝑛𝑘 =
(︀
𝑛−𝑘+𝛼−1

𝑛−𝑘

)︀
/
(︀
𝑛+𝛼
𝑛

)︀
. Here a LIL for

1/2 < 𝛼 ≤ 1 and a LSL for 𝛼 = 1/2 as well as certain strong laws
under appropriate moment conditions will be presented
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FOURIER SERIES AND FOURIER TRANSFORM OF

GENERAL STOCHASTIC MEASURES

N. O. STEFANSKA

The Fourier series and the Fourier transform of general stochastic
measures are considered in this work. The convergence of the Fourier
series and the absolute continuity of stochastic measures are studied.
The inversion theorem for Fourier transform and connection with con-
vergence of stochastic integrals are established.

Let 𝐿0 = 𝐿0 (Ω,ℱ ,P) be the set of all real-valued random variables
defined on the complete probability space (Ω,ℱ ,P) (more precisely, the
set of equivalence classes). Convergence in 𝐿0 means the convergence
in probability. Let 𝑋 be an arbitrary set and ℬ — a 𝜎-algebra of
subsets of 𝑋. Let 𝜇 be a stochastic measure (SM) on ℬ (𝜎-additive
mapping 𝜇 : ℬ → 𝐿0).

An example of stochastic measures is 𝜇(𝐴) =
∫︀ 𝑇

0
1𝐴(𝑥) 𝑑𝑋(𝑥),

where 𝑋(𝑥), 0 ≤ 𝑥 ≤ 𝑇 , be a square integrable martingale or a frac-
tional Brownian motion with Hurst index 𝐻 > 1/2, ℬ be the Borel
𝜎-algebra on [0, 𝑇 ].

Integrals of deterministic functions with respect to general SMs are
well studied in [1](see also [2]). In particular, every bounded mea-
surable function is integrable with respect to any 𝜇. An analogue of
the Lebesgue dominated convergence theorem holds for this integral
(see [2, Proposition 7.1.1], [1, Corollary 1.2]).

The integral of a random function with respect to Lebesgue measure
𝑑𝑡 is considered in Riemann sense, this integral is studied in [3].

Let ℬ be the Borel 𝜎-algebra on (−1/2, 1/2]. For general SM 𝜇 on
ℬ we define the Fourier series

𝜇 ∼
∑︁

𝑘∈Z
𝜉𝑘 exp {2𝜋𝑖𝑘𝑡} , where 𝜉𝑘 =

∫︁

(−1/2, 1/2]

exp {−2𝜋𝑖𝑘𝑡} 𝑑𝜇(𝑡).

We will use the notation

𝑠𝑚,𝑛(𝑡) =
∑︁

−𝑚≤𝑘≤𝑛

𝜉𝑘 exp {2𝜋𝑖𝑘𝑡} .

Theorem 1. If all 𝜉𝑘 = 0 a.s., 𝑘 ∈ Z, then 𝜇(𝐴) = 0 a.s. for all
𝐴 ∈ ℬ.
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We have the weak convergence of partial sums 𝑠𝑚,𝑛 in the following
sense.

Theorem 2. Let function 𝑔 : [−1/2, 1/2] → R, 𝑔(−1/2) = 𝑔(1/2),
satisfies Dini’s condition uniformly on [−1/2, 1/2] (see [4, 14.35]).
Then ∫︁

(−1/2, 1/2]

𝑔(𝑡)𝑠𝑚,𝑛(𝑡) 𝑑𝑡
P→

∫︁

(−1/2, 1/2]

𝑔(𝑥) 𝑑𝜇(𝑥), 𝑚, 𝑛 → ∞. (1)

Corollary 1. Let function 𝑔 : [−1/2, 1/2] → R satisfies the Hölder
condition uniformly:

|𝑔(𝑡 + ℎ) − 𝑔(𝑡)| ≤ 𝐶|ℎ|𝛼,
𝐶, 𝛼 are independent of 𝑡, 𝑔(−1/2) = 𝑔(1/2). Then (1) holds.

Assumption 1. For some 𝑝 ≥ 1, for any sequence
𝑓𝑛 ∈ 𝐿𝑝 ((−1/2, 1/2] , 𝑑𝑡) such that

∫︀
(−1/2, 1/2]

|𝑓𝑛(𝑥)|𝑝 𝑑𝑥 → 0,

𝑛 → ∞, holds
∫︀

(−1/2, 1/2]

𝑓𝑛(𝑥) 𝑑𝜇(𝑥)
P→ 0, 𝑛 → ∞.

The following theorem gives the absolute continuity of SM with
respect to Lebesgue measure.

Theorem 3. Let Assumption 1 holds,
∑︀

𝑘 |𝜉𝑘| < +∞ a.s., 𝜉(𝑡) =∑︀
𝑘∈Z 𝜉𝑘 exp {2𝜋𝑖𝑘𝑡}, function 𝑔 : [−1/2, 1/2] → R, satisfies Dini’s

condition uniformly on [−1/2, 1/2]. Then∫︁

(−1/2, 1/2]

𝑔(𝑡) 𝑑𝜇 =

∫︁

(−1/2, 1/2]

𝜉(𝑡)𝑔(𝑡) 𝑑𝑡.

In the sequel, ℬ is the Borel 𝜎-algebra in R𝑑. We consider the
Fourier transform of general SM 𝜇 on ℬ,

𝜇̂(𝑡) =

∫︁

R𝑑

𝑒−2𝜋𝑖⟨𝑡,𝑥⟩ 𝑑𝜇(𝑥) =

∫︁

R𝑑

cos 2𝜋⟨𝑡, 𝑥⟩ 𝑑𝜇(𝑥) − 𝑖

∫︁

R𝑑

sin 2𝜋⟨𝑡, 𝑥⟩ 𝑑𝜇(𝑥), 𝑡 ∈ R𝑑,

where ⟨𝑡, 𝑥⟩ = Σ1≤𝑘≤𝑑𝑡𝑘𝑥𝑘. (See more details in [5]). By 𝒟 we denote
the set of infinitely differentiable functions 𝜙 : R𝑑 → C with bounded
support, C0 denotes the set of continuous functions 𝑓 : R𝑑 → C such
that lim|𝑡|→∞ 𝑓(𝑡) = 0.
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We have the inversion theorem for Fourier transform.

Theorem 4. For each function 𝜙 ∈ 𝒟 holds∫︁

R𝑑

𝜙(𝑥) 𝑑𝜇(𝑥) = lim
𝛼→0+

∫︁

R𝑑

𝜙(𝑥) 𝑑𝑥

∫︁

R𝑑

𝑒−4𝜋2𝛼|𝑡|2𝑒2𝜋𝑖⟨𝑥,𝑡⟩𝜇̂(𝑡) 𝑑𝑡.

The following statement shows a connection with convergence of
stochastic integrals.

Theorem 5. Let 𝜇𝑛 and 𝜇 are SMs on ℬ, values 𝜇𝑛(𝐴), 𝐴 ∈ ℬ, 𝑛 ≥ 1,
are bounded by probability. Then the following statements are equiva-
lent:

1) for each 𝑓 ∈ C0∫︁

R𝑑

𝑓 𝑑𝜇𝑛
P→

∫︁

R𝑑

𝑓 𝑑𝜇, 𝑛 → ∞;

2) for each 𝑓 ∈ C0 ∩ 𝐿1

(︀
R𝑑, 𝑑𝑡

)︀
∫︁

R𝑑

𝑓(𝑡)𝜇̂𝑛(𝑡) 𝑑𝑡
P→

∫︁

R𝑑

𝑓(𝑡)𝜇̂(𝑡) 𝑑𝑡, 𝑛 → ∞.
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ON THE MONITORING OF CAPM PORTFOLIO BETAS

J. G. STEINEBACH

Despite substantial criticism, variants of the Capital Asset Pricing
Model (CAPM) remain still the primary statistical tools for portfolio
managers to assess the performance of financial assets. In the CAPM
the risk of an asset is expressed through its correlation with the market,
widely known as the beta. There is now a general consensus among
economists that these portfolio betas are time-varying and that, con-
sequently, any appropriate analysis has to take this variability into
account. Moreover, recent advances in data acquisition and process-
ing techniques have led to an increased research output concerning
high-frequency models.

Within this framework, we first briefly discuss a modified functional
CAPM, introduced in Aue et al. [1], that incorporates microstructure
noise, as well as sequential monitoring procedures to test for the con-
stancy of the portfolio betas in this setting. The main results provide
some large-sample properties of these procedures.

In a second part of our talk, we present some more recent results
of Chochola et al. [2], [3] on robust procedures for the monitoring of
CAPM portfolio betas. Some asymptotic sequential tests are discussed
for the (ordinary) CAPM in discrete time as well as some extensions
of the procedures to a functional version of the CAPM are provided.
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Köln, Germany
E-mail address: jost@math.uni-koeln.de

LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS

53



APPLYING THE GENERALIZED SILVERMAN–SASS

MATRIXES IN A SUMMATION OF A RANDOM SERIES

O. P. STRAKH

We consider a problem of a summation of a random series using
generalized Silverman–Sass matrixes [1, 4], which are a special case
of the Voronoi–Nörlund methods [1]. In view of the estimates for the

transition functions of random series [2, 3], for each regular matrix ̃︂𝐴𝑚

the switching conditions
̃︂𝐴𝑚 ⊆ ̃︁𝐴𝑛

and the necessary conditions for separability of the corresponding field
of summability are found.
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GROWTH OF SOME RANDOM PROCESS

O. A. TYMOSHENKO, O. I. KLESOV

A lot of examples of stochastic differential equation applications
can be found in engineering, physics, chemistry, biology, economics,
financial mathematics etc. The behavior of solutions for all stochastic
models is quite irregular which perhaps reflects the random nature of
a solutions. However, one could want to have a simpler (possibly, non-
random) approximation of the solution that explains the main trend
of the fluctuations. I.I. Gihman and A.V. Skorokhod [1] are one of the
who first began to study the problem of the asymptotic behavior of
the solution of autonomous differential equation perturbed by Wiener
process. In case, when solution of the stochastic differential equation
is tend to infinity, they have found a deterministic function 𝜑 for which

lim
𝑡→∞

𝜂(𝑡)

𝜑(𝑡)
= 1 a.s. (1)

This function 𝜑 is called the exact order of growth of the process 𝜂 as
𝑡 → ∞.

In the talk, the problem of finding nonrandom approximations (1) of
solutions of a general class of stochastic differential equations that in-
cludes equations such that one-factor short rate model of interest rates,
affine model, constant elasticity of variance model, Gompertz equation
is studied. We follow the setting by I.I. Gihman and A.V. Skorohod [1],
however the results of our talk are more general.
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ASYMPTOTICALLY EFFICIENT STATISTICAL

ESTIMATION IN PARTIALLY OBSERVED SYSTEMS

V. ZAIATS

Assume that we observe a process 𝑋 = (𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 ) satisfying
the following system of stochastic differential equations:

d𝑋𝑡 = ℎ𝑡𝑌𝑡 d𝑡 + 𝜀 d𝑊𝑡, 𝑋0 = 0,

d𝑌𝑡 = 𝑔𝑡𝑌𝑡 d𝑡 + 𝜀 d𝑉𝑡, 𝑌0 = 𝑦0 ̸= 0, 0 ≤ 𝑡 ≤ 𝑇,

where 𝑊𝑡 and 𝑉𝑡, 0 ≤ 𝑡 ≤ 𝑇 , are two independent Wiener processes.
The process 𝑌 = (𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 ) is not observed directly, but it is
the one that should be controlled.

The problem of asymptotically efficient estimation of different func-
tions on 0 ≤ 𝑡 ≤ 𝑇 under a small noise, i.e., as 𝜀 → 0, is considered.
An approach due to Kutoyants [1, Chapter 6] for handling this type of
problems leads to constructing kernel-type estimators for the functions
𝑓𝑡 := ℎ𝑡𝑦𝑡, ℎ𝑡, 𝑦𝑡, 𝑔𝑡, 0 ≤ 𝑡 ≤ 𝑇 . Here 𝑦𝑡, 0 ≤ 𝑡 ≤ 𝑇 , stands for the
solution of the above model with both noise terms dropped.

Lower bounds on the rate of convergence of asymptotically efficient
estimators are obtained. The estimators giving these lower bounds are
constructed explicitly.

This presentation is a result of a joint work with Yu. Kutoyants
(Université du Maine, Le Mans, France). The author is supported
by the MINECO (Spain) under grant MTM2015–69493–R and par-
tially supported by the Universitat de Vic—Universitat Central de
Catalunya under grant R0904.
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Facultat de Ciències i Tecnologia (U Science Tech),

Universitat de Vic—Universitat Central de Catalunya, c/. Laura, 13,

08500 Vic (Barcelona), Spain
E-mail address: vladimir.zaiats@uvic.cat

56 LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS



LIMIT THEOREMS FOR COMPOUND RENEWAL

PROCESSES

N. M. ZINCHENKO

We consider compound renewal processes (random sums, randomly
stopped sums) of the form

𝐷(𝑡) = 𝑆(𝑁(𝑡)) =

𝑁(𝑡)∑︁

𝑖=1

𝑋𝑖,

where {𝑋𝑖, 𝑖 ≥ 1} are i.i.d.r.v., 𝑆(𝑡) =
∑︀[𝑡]

𝑖=1 𝑋𝑖, 𝑡 > 0, 𝑆(0) = 0;
{𝑍𝑖, 𝑖 ≥ 1} is another sequence of non-negative i.i.d.r.v. independent

of {𝑋𝑖}, 𝑍(𝑥) =
∑︀[𝑥]

𝑖=1 𝑍𝑖, 𝑥 > 0, 𝑍(0) = 0 and renewal (counting)
process 𝑁(𝑡) is defined as 𝑁(𝑡) = inf{𝑥 ≥ 0 : 𝑍(𝑥) > 𝑡}.

A few classes of strong limit theorems for compound renewal pro-
cesses are investigated. The first one is so-called strong invariance prin-
ciple ( SIP), which presents the sufficient conditions for a.s. approxi-
mation of 𝐷(𝑡) by a Wiener or 𝛼-stable Levy process under various
assumptions on the renewal process 𝑁(𝑡) and independent summands
{𝑋𝑖, 𝑖 ≥ 1}. For instance, the following theorem is proved:

Theorem 1. (i) Let 𝐸|𝑋1|𝑝1 < ∞, 𝐸|𝑍1|𝑝2 < ∞ and suppose that
𝑝 = min{𝑝1, 𝑝2} > 2, 𝐸𝑋1 = 𝑚, 𝑉 𝑎𝑟𝑋1 = 𝜎2, 𝐸𝑍1 = 1/𝜆 > 0, 𝜏2 =
𝑣𝑎𝑟𝑍1, then {𝑋𝑖} and 𝑁(𝑡) can be constructed on the same probability
space together with a standard Wiener process {𝑊 (𝑡), 𝑡 ≥ 0} in such a
way that a.s.

sup
0≤𝑡≤𝑇

|𝐷(𝑡) − 𝜆𝑚𝑡− 𝜈𝑊 (𝑡)| = 𝑜(𝑇 1/𝑝), 𝜈2 = 𝜎2𝜆 + 𝑚2𝜏2𝜆3; (1)

(ii) if 𝑝 = 2, then right side of (1) is 𝑜(𝑇 ln ln𝑇 )1/2;
(iii) if 𝐸 exp(𝑢𝑋1) < ∞, 𝐸 exp(𝑢𝑍1) < ∞ for all 𝑢 ∈ (0, 𝑢𝑜), then
right-hand side of (1) is 𝑂(ln𝑇 ).

Corresponding proofs are based on the rather general SIP-type theo-
rems for the superposition of random processes (not obligatory con-
nected with partial sums) [1]. The same approach is used for explo-
ration the asymptotic behavior of 𝐷(𝑡) in the cases, when summands
are dependent (𝜙-mixing, weakly dependent, associated).
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On the next step we use SIP-type results for further investigation the
rate of grows of compound renewal processes and their increments. For
this purpose a number of integral tests are proposed. As a consequence
various modifications of the LIL and Erdös-Rényi-Csörgő-Révész-type
law for increments 𝐷(𝑡 + 𝑎𝑡) − 𝐷(𝑡) over intervals, whose length 𝑎𝑡
grows as 𝑡 → ∞, are obtained under various dependent and moment
assumptions on {𝑋𝑖, 𝑖 ≥ 1} and {𝑍𝑖, 𝑖 ≥ 1}.

Certain applications in risk and queuing theories are discussed [2].

References

[1] Zinchenko N. M., Almost sure approximation of the superposition of the random

processes // Methodology and Computing in Applied Probability. 2015. Vol. 17,

P. 235–250.
[2] Zinchenko N. M., Strong limit theorems for the risk process with stochastic

premiums // Markov Processes and Related Fields. 2014, Vol. 20, no 3. P. 527–

544.

Department of Informatics and Applied Mathematics,

Nizhyn State Mukola Gogol University, Kropyv’yanskogo 2, 16600, Nizhyn,

Ukraine
E-mail address: znm@univ.kiev.ua

58 LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS



LIMIT THEOREMS IN PROBABILITY THEORY,
NUMBER THEORY AND MATHEMATICAL STATISTICS

59

Author Index

Blazhievska, 9

Bodnarchuk I., 10

Bodnarchuk S., 11

Dashkov, 13

Dorogovtsev, 15

Doukhan, 16

Dudko, 18

Dykhovychnyi, 18

Fomichov, 19

Gut, 49

Ianevych, 21

Iksanov, 23

Ilienko A., 25

Ilienko M., 26

Indlekofer, 5

Ivanov, 28

Izyumtseva, 15

Kaya, 29

Klesov, 5, 30, 55

Korenovska, 31

Kozachenko, 21

Kukush, 33, 34

Leonenko, 35

Marynych, 23

Mikosch, 36

Mishura, 33

Molchanov, 37

Moskvychova, 39

Orlovskyi, 40

Osypchuk, 41

Pavlenkov, 43

Pilipenko, 44

Portenko, 41

Prokhorenko, 45

Prykhodko, 46

Ralchenko, 33

Riabov, 47

Savych, 48

Stadtmüller, 49

Stefanska, 50

Steinebach, 5, 53

Strakh, 54

Tsaregorodtsev, 34

Tymoshenko, 55

Wespi, 37

Zaiats, 56

Zinchenko, 57


