(возвести в квадрат и умножить). Последовательность опе-
раций определяется следующим образом: если очередное
двоичное число в бинарном разложении равно 0, то при-
меняется операция ^, а иначе — операция ^×. В нашем
примере последовательность такова: (^×)(^×)(^×). Эта
последовательность операций для базового числа 7 записы-
вается следующим образом:

$$
\left((\left((1^2 \times 7)^2 \times 7 \right)^2 \times 7 \right).
$$

Теперь для каждой скобки (начиная с самой внутренней)
выполняем соответствующую операцию по мод 10, используя
для каждого последующего шага результат предыдуще-
го вычисления:

$$
\begin{align*}
1^2 \times 7 \mod 10 &= 7, \\
7^2 \times 7 \mod 10 &= 343 \mod 10 = 3, \\
3^2 \mod 10 &= 9, \\
9^2 \times 7 \mod 10 &= 567 \mod 10 = 7.
\end{align*}
$$

8.1. **Бинарное представление.** Рассмотренный выше
метод возвести в квадрат и умножить начинается с полу-
чения бинарного представления степени. Рассмотрим два
самых простых способа перевода десятичного числа в би-
нарное представление. Принцип работы каждого из них
рассмотрим на примере перевода десятичного числа $x = 15$
в двоичное.

Начать со старшей цифры. Обозначим $x_0 = x$. Находи-
m наибольшую степень m_0 двоики, для которой $2^{m_0} \leq x$.
Ясно, что $m_0 = 3$, так как $2^3 \leq 15 < 2^4$. Повторим эту же
програму, но для числа $x_1 \overset{\text{def}}{=} x_0 - 2^{m_0} = 15 - 2^3 = 7$. Полу-
чаем число $m_1 = 2$; вычисляем $x_2 = x_1 - 2^{m_1} = 7 - 2^2 = 3$.

Далее действуем по этому же принципу: находим \(m_2 = 1 \); вычисляем \(x_3 = x_2 - 2^{m_2} = 2 - 2^1 = 1 \); находим \(m_3 = 0 \); вычисляем \(x_4 = x_3 - 2^{m_3} \). В общем случае алгоритм заканчивает работу, когда очередное \(x \) становится равным 0.

Чтобы записать двоичное представление числа 15, необходимы \(m_0 + 1 \) позиций: самая левая позиция имеет номер 0, а самая правая — номер \(m_0 \). В позициях \(m_0, m_1, m_2, \ldots \) этого представления записываем единицы, а других позиций — нули. Итак, 15 = 11112.

Начать с младшей цифры. Число \(x_0 = 15 \) нечетное, поэтому \(b_0 = 1 \) (инаке следовало бы выбрать \(b_0 = 0 \)). Пусть \(x_1 \triangleq (x_0 - b_0)/2 \). Число \(x_1 = 7 \) нечетное, поэтому \(b_1 = 1 \). Продолжаем в том же духе: \(x_2 \triangleq (x_1 - b_1)/2 = 3, b_2 = 1, x_3 \triangleq (x_2 - b_2)/2 = 1, b_3 = 1, x_4 \triangleq (x_3 - b_3)/2 = 0 \). Алгоритм заканчивает работу, когда очередное \(x \) становится равным 0. В нашем примере алгоритм закончился на \(x_4 \), поэтому требуется 4 позиции, чтобы записать двоичное представление числа 15: 15 = \(b_3b_2b_1b_0 = 1111_2 \).

Преимущество этого алгоритма в том, что не требуется предварительного вычисления степеней двойки, но зато приходится неоднократно выполнять операцию деления на 2, которая выполняется довольно “медленно”.

9. **Как выбрать число, взаимно простое с \(\theta \)**

Для работы метода RSA необходимо найти число \(b \), взаимно простое с \(\theta \). Иными словами, необходимо найти число \(b \), для которого \(\text{gcd}(b, \theta) = 1 \). Для проверки последнего условия используют алгоритм Евклида, который позволяет находить наибольший общий делитель двух чисел.

Алгоритм выбора \(b \) является рандомизированным.
Шаг 1. Сгенерировать случайное число $b < \theta$
Шаг 2. С помощью алгоритма Евклида найти $\gcd(b, \theta)$
Шаг 3. Если $\gcd(b, \theta) = 1$ тогда

else повторить шаг 1.

Алгоритм 4. Выбор числа b

Быстродействие алгоритма 4 определяется функцией

$$\varphi(n) \overset{\text{def}}{=} \text{количество чисел } < n, \text{взаимно простых с } n,$$

которую называют функцией Эйлера. Вероятность того, что на отдельном шаге будет выбрано взаимно простое с θ число, примерно равна $\frac{\varphi(\theta)}{\theta}$. Поэтому для нахождения b в среднем требуется

$$\begin{align*}
\theta \\
\varphi(\theta)
\end{align*}$$

(12) шагов алгоритма 4.1 При "удачном" выборе p и q (напомним, что $\theta = (p - 1)(q - 1)$) отношение $\frac{\varphi(\theta)}{\theta}$ может быть близко к 1 и поэтому алгоритм 4 закончится за несколько шагов.

С другой стороны, "неудачный" выбор p и q приводит к отношению $\frac{\varphi(\theta)}{\theta}$ близкому к 0 и поэтому алгоритм 4 может выполняться достаточно длительное время.

Среди существующих оценок для функции Эйлера отметим следующую, которая выполняется для составных $\theta > 6$:

$$\sqrt{\theta} < \varphi(\theta) < \theta - \sqrt{\theta}.$$

Ясно, что $\varphi(p) = p - 1$, если p — простое число.

1Время ожидания “успеха” — это геометрическая случайная величина с параметром $\frac{\varphi(\theta)}{\theta}$. Математическое ожидание такой случайной величины равно число в (12).
10. Алгоритм Евклида

Этот алгоритм описан дважды в “Началах” Евклида. Упоминание об алгоритме имеется в более ранних источниках, поэтому Евклид по-видимому не является его изобретателем.

Покажем, как найти \(\gcd(1071, 462) \) с помощью алгоритма Евклида. Для начала, от 1071 отнимем такое кратное значение 462, чтобы разница была меньше, чем 462:

\[
1071 = 2 \times 462 + 147.
\]

Затем от 462 отнимем такое кратное значение 147, чтобы разница была меньше, чем 147:

\[
462 = 3 \times 147 + 21.
\]

Затем от 147 отнимем такое кратное значение 21, чтобы разница была меньше, чем 21:

\[
147 = 7 \times 21 + 0.
\]

Так как последний остаток равен нулю, алгоритм заканчивается и \(\gcd(1071, 462) = 21 \).

10.1. Общий случай. Пусть \(r_0 > r_1 \) два натуральных числа. Описанный ниже алгоритм Евклида требует \(O(\log_2 r_0) \) делений.

```
Input: x < y  
Output: gcd(x, y)  
Шаг 1. r_0 \defeq y, r_1 \defeq x; k = 1  
Шаг 2. if r_{k-1} делится на r_k then gcd(x, y) = r_k stop  
      else k := k + 1, повторить Шаг 2.
```

Алгоритм 5. Алгоритм Евклида
В алгоритме 5 рассматривается последовательность \(r_k \),
\(k \geq 0 \), образованная по правилу:

Шаг 1: если \(r_0 \) делится на \(r_1 \), то последовательность \(\{r_k\} \)
состоит из двух членов, \(r_0 \) и \(r_1 \); в ином случае, мы
вычисляем \(r_2 = r_0 \mod r_1 \);

Шаг 2: если формирование последовательности \(\{r_k\} \) не за-
кончено и \(r_1 \) делится на \(r_2 \), то последовательность
\(\{r_k\} \) состоит из трех членов, \(r_0, r_1 \) и \(r_2 \); в противном случае,
вычисляем \(r_3 = r_1 \mod r_2 \) и повторяем шаг 2
для пары \(r_2 \) и \(r_3 \).

Процедура продолжается до тех пор, пока не получим пару,
в которой одно из чисел делится на другое. Такая пара бу-
дет найдена за конечное количество шагов, так как члены
последовательности \(\{r_k\} \) monotonно убывают и неотрица-
тельны:

Обозначим последний индекс у членов последовательно-
сти \(\{r_k\} \) через \(n \). Тогда

\[
\begin{align*}
 r_0 &= k_1 r_1 + r_2, \quad 0 < r_2 < r_1, \\
 r_1 &= k_2 r_2 + r_3, \quad 0 < r_3 < r_2, \\
 r_2 &= k_3 r_3 + r_4, \quad 0 < r_4 < r_3, \\
 &\quad \vdots \\
 r_{n-2} &= k_{n-1} r_{n-1} + r_n, \quad 0 < r_n < r_{n-1}, \\
 r_{n-1} &= k_n r_n.
\end{align*}
\]

Пусть \(\alpha \overset{\text{def}}{=} \gcd(r_0, r_1) \) — наибольший общий делитель чисел
\(r_0 \) и \(r_1 \). Тогда \(\alpha = \gcd(r_1, r_2) \). Действительно, так как \(r_0 \) и
\(r_1 \) делятся на \(\alpha \), то и \(r_2 \) делятся на \(\alpha \). Если \(\gcd(r_1, r_2) = \gamma \alpha \),
то \(\beta r_1 \) и \(r_2 \) делятся на \(\gamma \alpha \), поэтому \(r_0 \) делятся на \(\gamma \alpha \).
Отсюда следует, что \(\gamma = 1 \) и следовательно \(\alpha = \gcd(r_1, r_2) \).

Аналогично этому доказывается, что \(\alpha = \gcd(r_{k-1}, r_k) \)
для любого \(1 \leq k \leq n \). Отсюда мы заключаем, что \(\alpha = r_n \).
Действительно, \(r_n \) делится на \(\alpha \). Если \(r_n = \gamma \alpha \), то на \(\gamma \alpha \) делится и \(r_{n-1} \), откуда сразу вытекает, что \(\gamma = 1 \), так как \(\alpha = \gcd(r_{n-1},r_n) \).

11. Расширенный алгоритм Евклида

В алгоритме 3 необходимо найти число \(a \), для которого \(ab \equiv 1 \pmod{\theta} \) при заданных \(b \) и \(\theta \). Такое число \(a \) называется обратным для \(b \) по модулю \(\theta \).

Обратное по модулю существует не для всех пар \(b \) и \(\theta \), но в важном случае \(\gcd(b,\theta) = 1 \) это действительно так.

Теорема 1. Пусть \(u \) и \(v \) натуральные числа, причем \(\gcd(u,v) = d \). Тогда существует пара целых чисел \(x \) и \(y \), для которых

\[
(13) \quad xu + yv = d.
\]

Доказательство теоремы 1 основано на так называемом расширенном алгоритме Евклида. Сначала мы выведем из теоремы 1 результат, необходимый для алгоритма 3, а потом докажем и саму теорему 1.

Следствие 1. Пусть \(b \) и \(\theta \) — натуральные числа, причем \(\gcd(b,\theta) = 1 \). Тогда существует обратное к \(b \) по модулю \(\theta \).

Доказательство следствия 1. Согласно теореме 1 существуют целые \(x \) и \(y \), при которых \(xb + y\theta = 1 \). Поэтому

\[
1 = (xb + y\theta) \mod \theta = xb \mod \theta,
\]

то есть \(x \) и есть обратное к \(b \) по модулю \(\theta \). \(\square \)

Доказательство теоремы 1. Равенство (13) очевидно при \(u = v \), так как \(d = u = v \) (достаточно в (13) выбрать \(x = 1 \) и \(y = 0 \)).

Рассмотрим случай \(u \neq v \). Не теряя общности считаем, что \(u > v \). Если \(v = 0 \), то \(\gcd(u,v) = u \) и поэтому равенство (13) выполнено при \(x = 1 \) и \(y = 0 \).
Если же $v \neq 0$, то обозначим $q = [u/v]$. Тогда

$$u \mod v = u - qv.$$

Равенство (13), но для пары $[v, u \mod v]$ вместо пары $[u, v]$, означает, что существуют целые числа x_1 и y_1, при которых

$$(14) \quad x_1 v + y_1 (u \mod v) = \gcd(v, u \mod v)$$

или

$$x_1 v + y_1 (u - qv) = \gcd(u, v),$$

так как $\gcd(u, v) = \gcd(v, u \mod v)$. Последнее равенство можно переписать в виде

$$y_1 u + (x_1 - qy_1)v = \gcd(u, v),$$

что равносильно (13) при $x = y_1$ и $y = x_1 - qy_1$. Таким образом из равенства (14) вытекает (13). Заметим, что вторая координата в паре $[v, u \mod v]$ неотрицательна, но строго меньше второй координаты в паре $[u, v]$.

Повторяя проведенное рассуждение необходимое количество раз, в конце концов получим пару с нулевой второй координатой, для которой представление типа (13) очевидно (как отмечено в начале доказательства). Из представления для последней пары получим представление для предыдущей пары, как описано выше. Продолжая в том же духе, через конечное количество шагов придем к равенству (13).

УПРАЖНЕНИЯ

Упражнение 1. Доказать, что любой аргумент $0 \leq x \leq 9999$ однозначно восстанавливается по значению функции $f(x) = 12^x \mod 10^4$.

Упражнение 2. Почему 0 не может принадлежать совокупности (3), если a является примитивным корнем по отношению к n?
10. “Начала” Евклida написаны примерно за 300 лет до нашей эры. Историки математики считают, что алгоритм был известен Евдоксу (375 лет до н. э.). Ван дер Варден доказывал, что этот алгоритм использовался уже в школе Пифагора (570 г.–495 г. до н. э.).

В “Началах” Евклida он описан дважды — в VII книге для нахождения наибольшего общего делителя двух натуральных чисел и в X книге для нахождения наибольшей общей меры двух однородных величин. В обоих случаях дано геометрическое описание алгоритма, для нахождения “общей меры” двух отрезков.