

Elements of Linear Algebra	1. Matrices (basic definitions). Determinant of a matrix (definition, properties). Minor and cofactor to the element of a matrix. 2. Linear simultaneous equations. Cramer's rule. The rank of a matrix. Theorem about principal (basic) minor. Consistency criterion for linear simultaneous equations (Kroneker - Capelli's theorem). Homogeneous linear simultaneous equations (conditions for the existence of a non-trivial solution, the fundamental set of solutions, the structure of the general solution). 3. Linear vector space. Linear dependence of vectors. Basis and dimension of the space. Subspace and linear spans. Intersection and union of subspaces. Solution (null) space to a homogeneous linear system. Linear operators and their matrix representations. 4. Linear operators and matrices. Composition of linear operators and matrix multiplication. Inverse operator and inverse matrix. Image and kernel of a linear operator. Eigenvalues and eigenvectors of linear operators. Change of basis for linear transformations.
Fundamentals of Discrete Mathematics	1. Sets and operations with them. 2. Cardinality of sets. Comparing cardinalities. Finite and infinite sets (definition, examples). Countable (countably infinite) and uncountable sets (examples, properties). Sets of cardinality continuum. Cantor's diagonalization method.

	3. Foundations of combinatorics: permutations, arrangements, combinations. Permutations with repetition. arrangements with repetition, combinations with repetition. 4. Power Series and Dirichlet Series. Generating Functions. Recurrent sequences. Stirling Numbers, Fibonacci Numbers, Catalan Numbers, Bernoulli Numbers and Polynomials.
Fundamentals of Mathematical Analyses	1. Sequences. Limit of a sequence. Basic properties of convergent sequences. Limit of a monotone bounded sequence. The number e. 2. Functions (definition, basic characteristics of behavior of functions). Limit of a function at infinity. Limit of a function at a point. Basic properties. 3. Derivative of a function: definition, geometric interpretation. Tangent line and normal to a curve. Derivatives of elementary functions (a table of basic derivatives). Rules of differentiation, including chain rule and inverse function differentiation. 4. Antiderivative (primitive) and indefinite integral. Basic properties of indefinite integral. Main methods of integration (integration by substitution, integration by parts).
Fundamentals of Calculus of Complex Functions	1. Complex Numbers. Cartesian Form of a complex number (definition, complex conjugates, basic operations). Geometric representation of a complex number. Polar form of a complex numbers (definition, operations, de Moivre's formula).

	Exponential form of a complex number (Euler's formula). 2. Differentiability of a function of a complex variable. Geometric interpretation of the derivative of a function of a complex variable. Cauchy-Riemann equations. Conformal mapping (definition). 3. Complex power series. Abel's theorem and the radius of convergence. Basic properties of complex power series within its disk of convergence. 4. Taylor series for analytic functions. Taylor series expansions of elementary functions (examples).
Basic Concepts of Number Theory and Cryptography	1. Divisibility theory of natural numbers; modular multiplicative inverse (an inverse of a number ($\bmod n$)); multiplicative ciphers. 2. Euler's phi-function (Euler's totient function), Euler's theorem; linear ciphers. 3. Modular square root (square root mod m); exponential ciphers. 4. Primality tests; RSA algorithm.
Basic Concepts of Probability Theory	1. Classical definition of probability (classical probability concept). Probability of union, intersection, complement, symmetric difference of random events. 2. Independent events. Conditional probability. Law of total probability. Bayes' Theorem. 3. Classical distributions: Uniform, Bernoulli, Binomial, Hypergeometric, Poisson, Gaussian. 4. Mathematical expectation, variance and moments of random variable. 5. Bernoulli's law of large numbers. Poisson Theorem. De Moivre-Laplace theorem.

